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We theoretically study the dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing
two electrons. In our prior work [Phys. Rev. Lett. 104, 226807 (2010)], we identified three regimes of long-term
dynamics, including the buildup of a large difference in the Overhauser fields across the dots, the saturation of
the nuclear polarization process associated with the formation of so-called dark states, and the elimination of
the difference field. In particular, when the dots are different sizes, we found that the Overhauser field becomes
larger in the smaller dot. Here we present a detailed theoretical analysis of these problems, including a model
of the polarization dynamics and the development of a numerical method to efficiently simulate semiclassical-
central-spin problems. When nuclear spin noise is included, the results agree with our prior work indicating that
large difference fields and dark states are stable configurations, while the elimination of the difference field is
unstable; however, in the absence of noise, we find all three steady states are achieved depending on parameters.
These results are in good agreement with dynamic nuclear polarization experiments in double quantum dots.
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I. INTRODUCTION

The study of nonequilibrium dynamics of nuclei in solids
has a long history1 and has become particularly relevant as
nanoscale engineering and improvements in control allow
one to probe mesoscopic collections of nuclear spins.2–8

This control has direct applicability to quantum information
science, where nuclear spins are often a main source of
dephasing.9 The goal of developing an understanding of
electronic control of nuclei is to circumvent this nuclear
dephasing and to turn nuclear spins into a useful resource,10

as indicated in recent experiments.11–17

Double quantum dots in III-V semiconductors can be
operated with two electrons coupled to approximately 104

to 106 nuclei by the contact hyperfine interaction. Repeated
cycles transitioning from the electronic singlet to triplet states
can be used to polarize the nuclear spins; electron spin
flips between the singlet and triplet spaces occur due to the
difference D in the Overhauser fields on the two dots.18

Early experimental11 and theoretical19–22 works suggested
that the polarization process naturally drove the projection
of the difference field onto the magnetic field axis Dz to zero.
However, later experiments and theory both showed that the
polarization is naturally accompanied by a growth in Dz and
that the data in the original experiments showing a suppression
in Dz was likely misinterpreted.13,23 Instead, the results are
more consistent with the growth of a large Dz accompanied
by a reduction in measurement contrast between singlet and
triplet states, which makes it appear as if Dz is small.24

In Ref. 23, we developed a model to describe the long-time
dynamics of the nuclear spins undergoing adiabatic pumping.
These results are in good agreement with the experiments
described above.13,16 The main conclusion from this work
was that when the dots are different sizes, the Overhauser
field becomes larger in the smaller dot, thereby resulting in
large difference fields. In the present work, we present a
detailed theoretical analysis of these problems. We describe the
theoretical methods developed to study this system, including

a method for efficient simulation of semiclassical-central-spin
problems, and detail the experimentally relevant polarization
phenomena we find in our model. The main results of the
present work are that when nuclear spin noise is included, the
more detailed theory presented here agrees with the results of
Ref. 23; however, in the absence of nuclear spin noise, states
with Dz = 0 can also be achieved for certain parameters.

Our theoretical methods are based on a semiclassical
description of the nuclear spin dynamics in which the nuclear
spins are grouped into small sets, each homogeneously coupled
to the electron spin.25 The nuclei in each set may be treated
as a single collective spin and a semiclassical treatment is
justified provided the number of spins in each set remains large.
Increasing the number of such sets improves the approximation
to the true hyperfine coupling. More formally, we construct
a systematic approximation to the true hyperfine coupling
in terms of a reduced set of M coupling constants. For the
optimal choice of coupling constants, we rigorously prove that
our approximation reproduces the exact semiclassical time
dynamics to within a fixed error for a time that increases
linearly with M . For large M , this allows examination of the
long-time scales relevant for polarization experiments. This
approach extends previous work that assumes that all nuclei on
a given dot have equal coupling to the electron spin,19–22,26,27

an approach which often incorrectly predicts rapid saturation
of the polarization. Other extensions to this homogenous
coupling model, including semiclassical solutions for the
central spin,28–31 and cluster and diagrammatic expansion
techniques for short-time nonequilibrium behavior32–34 do not
explore the wide range of time scales or relevant physics for
the double-dot case.

Our results can be broken up into two distinct cases
depending on whether or not the dots are identical. When
the dots are different sizes, the hyperfine coupling, which
scales inversely with the volume, is larger on the smaller dot,
and we find that the Overhauser field grows preferentially on
the smaller dot as the polarization increases. This preferential
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growth results in a large Overhauser difference field Dz. For
two dots with a difference in volume of less than ∼20%, we
find a rich and complex phase diagram for the nuclear spin
dynamics, which can be broken into two distinct regimes.
The first regime occurs with large external magnetic fields or
short cycle times. In this regime, the system saturates without
significant polarization because the perpendicular components
of D rapidly approach zero and spin flips are suppressed; the
system approaches a semiclassical “dark state.” This occurs
with no statistical change in the distribution of Dz. The second
regime occurs in the limit of smaller magnetic fields or slower
cycle times. In this regime, the dynamics are sensitive to the
inclusion of nuclear spin noise. In the absence of nuclear spin
noise, we find that one potential end state of polarization is a
“zero state” in which all components of D → 0. In this state,
the singlet and triplet electronic subspaces are completely
decoupled and spin flips no longer occur. Simultaneously,
though, there are instabilities leading to the growth of large
Overhauser difference fields. Crucially, when even a small
amount of nuclear spin noise is added, the zero states strongly
destabilize and the system generically becomes unstable to the
growth of large difference fields, as shown in Ref. 23.

These results provide a clear picture of the polarization
dynamics in such double quantum dot systems and will be
a useful guide to future experiments aimed at more precise
control of the nuclear spins. Although the paper is specific
to double quantum dots in GaAs, many of the results and
theoretical methods extend to other central-spin systems under
investigation.35–37 More generally, this work is of fundamental
interest as we explore the dynamics of an interacting, many-
body system when it is far from equilibrium.38

The paper is organized as follows. In Sec. II, we define
the Hamiltonian for the double-dot system and introduce the
polarization cycle. In Sec. III, we systematically derive a
semiclassical model for the nuclear spins starting from the
coarse-grained evolution of the nuclear spin density matrix.
In Sec. IV, we present our results for identical and unequal
dots in the presence and absence of nuclear spin noise. In
Appendix A, we provide a summary of the parameters used in
our simulations. In Appendix B, we describe our approach
to coarse graining the electron wave function and provide
rigorous bounds on the error in time evolution due to the
coarse graining. In Appendix C, we extend our simulations to
the case of multiple nuclear species and find qualitatively the
same results as for a single species.

II. SETUP

For a double quantum dot with two electrons, we can
write the Hamiltonian for the lowest-energy (1,1) and (0,2)
electron states, where (n,m) indicates n (m) electrons in the
left (right) dot. To model nuclear polarization, we first derive
an effective two-level Hamiltonian to describe the system
near the crossing of the singlet s and lowest-energy triplet
state, T+, of this two-electron system, then solve the time
dynamics. Dynamic nuclear polarization (DNP) experiments
operate near this crossing, typically with an adiabatic sweep of
the difference in the dot’s electric potential through the s-T+
degeneracy [Fig. 1(a)], followed by a nonadiabatic return to
(0,2) and reset of the electronic state via coupling to leads.
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FIG. 1. (Color online) (a) The Overhauser field in each dot gives
rise to sum and difference fields which are relevant for the double-dot
system. (b) Schematic of two-electron energy levels as a function
of detuning ε between (1,1) and (0,2) charge states. Arrows indicate
adiabatic sweep through avoided crossing (red) and rapid sweep back
to (0,2) with reload (green). (c) Spin-flip pathways between the s and
T+ states as the exchange energy J (ε) is swept through the crossing,
showing the nuclear operators involved in each path. Each pathway
is a term in D̃− in Eq. (2).

If ψd (r) is the single-particle envelope wave function on
dot d = l,r (for the left, right dot), the effective hyperfine
coupling for the nuclear spin at rkd is gkd = ahfv0|ψd (rkd )|2,
where ahf is the hyperfine coupling constant and v0 is the
volume per nuclear spin. We introduce two collective nuclear
spin operators to denote the Overhauser fields in the left (L̂)
and right (R̂) dots, L̂ = ∑

k gklIkl and R̂ = ∑
k gkrIkr , and

further define Ŝ = (L̂ + R̂)/2, D̂ = (L̂ − R̂)/2, where Ikd

is the angular momentum of the kth nucleus on dot d. The
rms Overhauser energy in the infinite-temperature ensemble
is �d = [

∑
k g2

kdI (I + 1)/3]1/2, where I is the magnitude of

each nuclear spin. We define � =
√

(�2
� + �2

r )/2, and work
in energy and magnetic field units such that � = − g∗μB

h̄
= 1,

where g∗ is the electron effective g factor and μB is the Bohr
magneton. In the basis {|s〉, |T+〉 , |T0〉 , |T−〉}, where the Tm

are the (1,1) triplet states and s is the (1,1)-(0,2) hybridized
singlet state, the Hamiltonian is39

H =

⎛
⎜⎜⎝

−J (ε) vD̂+ −√
2vD̂z −vD̂−

v D̂− −Bext + Ŝz Ŝ−/
√

2 0
−√

2vD̂z Ŝ+/
√

2 0 Ŝ−/
√

2
−vD̂+ 0 Ŝ+/

√
2 Bext − Ŝz

⎞
⎟⎟⎠ ,

where D± ≡ Dx ± iDy and similarly for S±, Bext is an external
magnetic field, v = v(ε) = cos θ (ε)/

√
2, and cos θ (ε) is the

overlap of the (1,1) singlet state with the (1,1)-(0,2) hybridized
singlet state |s〉. The parameters cos θ (ε) and J (ε), the splitting
between s and T0, are both functions of the energy difference
ε between the (1,1) and (0,2) charge states. Here the nuclear
spin variables refer to the full quantum-mechanical operators
on the nuclear spin space. In Appendix C, we will consider the
case of multiple nuclear species, but for now we consider the
nuclei to be spin-3/2 of a single species, in a frame rotating at
the nuclear Larmor frequency.

Assuming that J,Bext � �, we perform a formal expan-
sion in the inverse electron Zeeman energy operator m̂ =
�/(Bext − Ŝz + iη), where η > 0 is infinitesimal. We apply
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a unitary transformation that rotates the quantization axis of
the triplet states to align with Bext − Ŝ and find the Hamiltonian
for the {|s〉 , |T+〉} subspace to first order in J−1, m̂:

Heff =
(−J (ε) + ĥs v(ε)D̃+

v(ε)D̃− −Bext + ĥT

)
, (1)

where the effect of coupling to the higher-energy states |T0〉
and |T−〉 enters as

ĥs = −2v2

J
D̃†

zD̃z − D̃−
v2

J + Bext − Ŝz

D̃+,

ĥT = Ŝz − 1
4 (Ŝ−Ŝ+m̂ + m̂Ŝ−Ŝ+),

(2)
D̃− = D̂− + m̂Ŝ−D̂z − 1

4 m̂Ŝ2
−m̂D̂+ − 1

4 m̂ Ŝ−Ŝ+m̂D̂−,

D̃z = D̂z − 1
2 (Ŝ+m̂ D̂− + Ŝ−m̂D̂+).

Of particular interest is that the off-diagonal term, which
produces nuclear polarization, vanishes in the semiclassical
limit of 〈D̂〉 → 0, i.e., in the zero states.

III. MODEL

We develop a model for the evolution of the nuclear
spin density matrix after one pair of electrons has cycled
through the system. We approximate the sweep through the
|s〉-|T+〉 degeneracy as a Landau-Zener process, which we
solve approximately for the effect on the nuclear system. By
coarse graining this evolution over a cycle, we derive a master
equation for the nuclear spins. Finally, we add the effects of
nuclear dipole-dipole interactions and quadrupole splittings
phenomenologically. The derivation presented here is com-
plementary to that of Ref. 23 and results in the same equations
of motion (EOM).

The electron system is prepared in |s〉 at large negative
t = −T/2, where T is the total cycle time. We identify the
(nuclear spin) eigenstates of the operator D̃+D̃−, labeled
|D⊥〉 with eigenvalues D2

⊥. Since the components of hs

and hT that do not commute with D̃+D̃− are perturbatively
small in m0 and 1/J , we approximate them by keeping only
the diagonal components in the two-level-system subspace,
sending hs → 〈D⊥|ĥs |D⊥〉 and hT → 〈D′

⊥|ĥT |D′
⊥〉 where

|D′
⊥〉 ≡ D−1

⊥
ˆ̃D−|D⊥〉. In this limit, the off-diagonal part of

Heff in Eq. (1) produces standard Landau-Zener behavior,
while the diagonal components of Heff are simply phases
picked up by the nuclei, depending on which electronic state
is occupied. For initial state |�0〉 = |s〉 ⊗ |D⊥〉, the crossing
either leaves the electronic state unchanged or flips an electron
and nuclear spin to the state |T+〉 ⊗ |D′

⊥〉. We note that |D′
⊥〉

is an eigenstate of D̃−D̃+ with eigenvalue D2
⊥. The problem

is now reduced to finding Landau-Zener solutions for each
independent two-level system, {|s〉 ⊗ |D⊥〉, |T+〉 ⊗ |D′

⊥〉}. We
model the actual sweep of ε by a linear sweep of J so

J (t) = −2β2t + Bext, where β =
√

1
2 |dJ (ε)/dt ||t=0. We take

v(ε) to be constant, valid in the limit of large tunnel coupling,
and assume β  Bext to ensure the applicability of Eq. (1).
For moderate magnetic fields, v(ε) ∼ 1/

√
2, but it decreases

at large magnetic fields as the (1,1)-(0,2) hybridized singlet
state has a smaller overlap with (1,1) at the s-T+ crossing.

After one cycle, |�0〉 evolves into |�1〉 = cS |s〉 ⊗ |D⊥〉 +
cT |T+〉 ⊗ |D′

⊥〉. For β2T � 1, the standard Landau-Zener

formula gives the flip probability as pf = 1 − exp(−2πω2),
where ω = v〈D̃⊥〉/β and

cS = √
1 − pf exp(−iφS), cT = √

pf exp(−iφT ),

φS ≈
∫ T/2

−T/2
hSdt, (3)

φT ≈
∫ t0

−T/2
hSdt + (T/2 − t0)hT + φAD(ω),

where the crossing occurs at a time t0 ≈ Sz/β
2. We include

in φT the phase picked up by following the adiabat, φAD.
We approximate φAD by interpolating between the limits ω =
v〈D̃⊥〉/β → 0 and ω → ∞, giving40

φAD = 2πω2 + pf

{
ω2

[
1 − 2π + log

(
τ 2

ω2

)]
− π/4

}
,

where τ = Tβ/2. More accurate approximations can easily
be taken into account within our formalism; however, we find
that such corrections have a negligible effect on the long-term
polarization dynamics because the polarization process rapidly
drives ω to small values.

We move from the independent two-level systems to the
general case by noting that the components of |�〉 depend only
on the eigenvalue D⊥ and on the polarization Sz (which we
approximate as commuting). Since the eigenstates of D̃+D̃−
form a complete basis for the nuclear spin states, we can
define the complete operator p̂f = ∑

D⊥ pf (D⊥) |D⊥〉 〈D⊥|,
and similarly for φ̂S,φ̂T . The nuclear spin density matrix after
each cycle is given by tracing over the electronic states. The
nuclear density matrix evolution is then

ρn = √
1 − p̂f e−iφ̂S ρn−1e

iφ̂S
√

1 − p̂f

+
(

D̃−

√
p̂f

D̃+D̃−
e−iφ̂T

)
ρn−1

(
eiφ̂T

√
p̂f

D̃+D̃−
D̃+

)
,

where ρn is the nuclear density matrix after n cycles.
Rather than solve for the exact dynamics of the nuclear

density matrix—still an intractably hard computational prob-
lem for any reasonable number of nuclear spins—we instead
adopt an approximate solution to the problem using the P
representation for the density matrix as an integral over
products of spin-coherent states. From the thermal distribution,
we choose such a spin-coherent state and evolve it, where
we interpret expectation values 〈. . .〉 as being taken in that
state. The ensemble of such trajectories represents the physical
system.30

We organize this calculation by noting that the components
of the Landau-Zener model (φ̂S,φ̂T ,p̂f ,D̃±) are only functions
of L̂ and R̂. A spin-coherent state is entirely described by its
expectation values iid = 〈Iid〉. For the kth spin on the left
dot, we expand the discrete time difference, 〈Ikl〉n − 〈Ikl〉n−1,
after n and n − 1 cycles in the small parameter gkl , giving an
evolution equation

dikl

dt
= gkl

3∑
μ=1

Pl,μ〈i[∂gkl
L̂μ,Ikl]〉 = gkl P l × ikl, (4)
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FIG. 2. (Color online) (a) Independent random variable annular
approximation (IRVAA) to the electron wave function in the double
dot. (b) Key processes contributing to Eq. (6).

where gkl is the derivative with respect to gkl and

P l = 1

T
[〈1 − p̂f 〉〈∇l φ̂S〉 + 〈p̂f 〉〈∇l φ̂T 〉 − Im(γ l)],

where ∇l = (∂Lx
,∂Ly

,∂Lz
) are partial derivatives with respect

to the variables Lμ and

γ l =
〈
D̃+

p̂f

D̃−D̃+
∇lD̃−

〉
, (5)

and similarly for ikr , Pr , and γ r , with L replaced by R. The
factorization of expectation values is a natural consequence of
our spin-coherent state approximation, as it explicitly prevents
entanglement between spins. Thus we have an effective,
semiclassical picture of nuclear spins precessing and being
polarized by their interaction with the electron spin, integrated
over one cycle.

We approximate the electron wave function as a piecewise-
flat function with M levels, which we refer to as the annular
approximation, as illustrated in Fig. 2(a). Each annulus defines
Ind = ∑

k∈n ikd , where the sum is over all nuclei with the same
hyperfine coupling to the electron. Since gk is identical for
all k ∈ n, we can simply replace ikd with Ind in Eq. (4).
Furthermore, I 2

n is a conserved quantity, so we can study
the evolution of M  N spins in a reduced Hilbert space.
The typical size of In is ∼√

N/M � 1, which allows us to
replace the spin-coherent states used above with semiclassical
spins, and makes taking expectation values straightforward:
all quantum operators can be replaced by their expectation
values directly. In the simulations presented in this work,
we took up to ∼103 distinct hyperfine coupling constants,
which for such systems corresponds to ∼103 spins per layer
justifying the use of the semiclassical approximation.31 The
annular approximation should correctly describe the nuclear
dynamics for a time scale given by the inverse of the difference
between the gk of adjacent annuli.

To illustrate, to first order in m0 = B−1
ext , for d = l,r ,

Pd = pf λ(�+ẑ − �0S⊥) + m0�0
pf Dz

2πω2
ẑ × D

+�Rpf ∇dφAD ∓
[
�0

β2

4πv2
Im (γ l − γ r )

+ (1 − pf λ/2)(�0Dzẑ + �−D⊥)

]
, (6)

where the top sign applies for d = l, D⊥ = (Dx,Dy,0),
S⊥ = (Sx,Sy,0), λ = 1 − 2t0/T gives the shift in the location
of the crossing, and �0, �−, �+, �0, �R , and �0 are

constants depending on the details of the pulse cycle (see
below). We have replaced operators by their expectation values
and removed the angle brackets since we are now in the
semiclassical limit. To leading order in m0, Im(γ l − γ r ) =
2(D × ẑ)pf /D2

⊥. It is clear from Eqs. (4)–(6) that all dynamics
stop in the zero states with D = 0, consistent with the idea that
true saturation of polarization requires that all components
of D be small. We will focus on the stability of such states in
various parameter regimes. The equations of motion in Ref. 23
are found from Eq. (6) by including only the lowest order in
�T and �/β, which is the limit of fast cycles and small
spin-flip probability per cycle, respectively.

First we outline the meanings of the parameters in the
model. As indicated schematically in Fig. 2(b), the �0 term
originates in the hyperfine flip-flop, the �0 and �− terms are
the off-resonant effects of coupling from the singlet state to
the T0 and T− states, respectively, �0 comes from coupling
between the T+ and T0 states, and �+ comes from Knight
shifts due to occupation of the T+ state. To leading order in
m0, for a pulse sequence consisting of only the Landau-Zener
sweep, with instantaneous eject and reload, the parameters
have the values

�0 =
〈

2v2

J (t)

〉
c

≈ m0, �− =
〈

v2

J (t) + Bext

〉
c

≈ m0/4,

�+ = 1/4, �0 = m0/4,

�0 = 2πv2fc

β2
, �R = fc,

where fc = 1/T is the cycle frequency and 〈·〉c indicates an
average taken over a full cycle; these values can be modified
readily by changing the details of the pulse cycle, while leaving
the Landau-Zener portion unchanged. In Appendix A, we
provide a reference for all parameters used in the simulations.

Equation (4) is a good approximation of the nuclear dynam-
ics over a few DNP cycles because other nuclear processes are
slow compared to a typical experimental cycle (∼10–100 ns).11

However, the full DNP may last millions of cycles, at which
point these other nuclear processes become important. Apart
from Larmor precession, which is only relevant for the case
of multiple nuclear species considered in Appendix C, nuclear
quadrupole splittings and nuclear dipole-dipole interactions
are the dominant processes. They become relevant on a time
scale of a few hundred microseconds in these systems.39 We
include them in our model phenomenologically by adding a
fluctuating magnetic field hkd (t) in the z direction at each site
(the transverse terms are strongly suppressed by the external
field), such that

d ikd

dt
= gkd Pd × ikd − γn hkd ẑ × ikd , (7)

where γn is the nuclear gyromagnetic ratio. We further assume
that this field can be treated as noise and characterized by a
Gaussian, uncorrelated white-noise spectrum,

γ 2
n

〈
hz

kd (t)hz
k′d ′ (t ′)

〉
n

= 2η δ(t − t ′)δkk′δdd ′ , (8)

where 〈·〉n are averages over the noise.41
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IV. RESULTS

The polarization dynamics display three characteristic
behaviors: growth of large difference fields, saturation in
nuclear dark states defined by D⊥ = 0, and preparation in
zero states D = 0 which are global fixed points of the nuclear
dynamics in the absence of noise. In Ref. 23, this system was
studied in a restricted model focusing on the case where noise
was present. Therein, it was found that when the two dots have
different hyperfine couplings, the system generically grows
large difference fields, while for identical dots, depending on
parameters, the system is either unstable to the growth of
large difference fields or saturates in dark states; however,
the zero states were not found to be a relevant steady state
in any parameter regime. In the present work, we focus on
extending the results of Ref. 23 to a larger, more experimentally
relevant parameter regime by using equations of motion correct
to second order in m0 with a more complete model of the
Landau-Zener sweep as described in the previous section. In
addition, we consider the nuclear dynamics in the absence
of noise. We also present the full analytical calculations,
which were omitted from Ref. 23. In all physical parameter
regimes, we find qualitatively consistent results with Ref. 23;
however, for a limited, unphysical parameter regime, we do
find solutions to the equations of motion in the absence of
noise where the zero state is uniformly reached starting from
a completely uncorrelated nuclear spin ensemble.

The simulations shown below were performed with the
equations of motion correct to second order in m0, with ψd (r)
being a two-dimensional (2D) Gaussian. Taking v2 ≈ 1/2, we
estimate that for experiments performed with Bext = 10 mT
with T = 25 ns,11 m0 ≈ 0.18, �0 ≈ 0.20, but the � and �

terms depend on the rest of the cycle. In each of the simulations,
we choose initial magnitudes and directions of the spins In by
a procedure equivalent to choosing initial directions for each
of the Nn spin-3/2 nuclei in the nth annulus and evaluating
In = ∑

k∈n ik explicitly (see Appendix B). The relationship
between simulation time and laboratory time depends on the
details of the pulse cycle, including pauses and reloads not
considered explicitly here, but simulation time is roughly in
units of g−1

max, where gmax ≈ 2�2/ahf is the largest value of gk ,
so t = 400 is approximately 10 ms.

To organize our results, we recall the phase diagram for
identical dots and the simplified model derived in Ref. 23
in which the only nonzero parameters are �0,−, �0, and η,
which corresponds to the limit of large magnetic fields and
fast sweeps including nuclear spin noise. To obtain the phase
diagram, we consider, for each set of parameters, whether
the system supports self-consistent growth of |Dz| starting
from large values of |Dz| and |Sz|. This approach avoids
complications with the metastability of zero states discussed
later. Such simulations produce the phase diagram in Fig. 2(b)
of Ref. 23, which is reproduced in Fig. 3 with the full data
presented. From this figure, it is clear that we can separate
the dynamics into two regimes depending on parameters. For
large ratios of �0/�0, which corresponds to large magnetic
fields or strong pumping, the system quickly saturates with no
growth of large difference fields. For small ratios, there is an
instability towards large difference fields. In the first section,
we explore the dynamics in the absence of noise for identical

FIG. 3. (Color online) Phase diagram for the simplified model
presented in Ref. 23. At each value of parameters, 20 runs were
started with Dz = −2, Sz = −10, and all other components chosen
randomly according to the infinite-temperature ensemble. The color
scale indicates how many of those runs ended with |Dz| increased.
The dark region is of saturation and the light region is of instability.
The dashed line shows the prediction of the simple model of Eq. (30),
which captures the phase boundary, especially at low �−/�0. For
parameters used, see Table I.

dots with all parameters included. In the second section, we
include nuclear spin noise and asymmetry in the dot sizes.

A. Noise-free nuclear spins

From the general arguments given in Sec. I, it is clear
that when the dots have different hyperfine couplings, the
system naturally grows a large difference field. Furthermore,
in Ref. 23, it was shown that even identical dots display similar
behavior in the presence of nuclear spin noise. Although
a complete theory of the polarization dynamics must take
into account nuclear dipole-dipole interactions (which we
approximate by noise), it is still useful to study the dynamics
in the absence of noise. Such analysis is relevant especially
for short times and helps one gain an understanding of the role
of the coherent nuclear dynamics. Therefore, in this section,
we analyze the case of identical dots in the absence of noise.
We begin by deriving a phase diagram analogous to the one
obtained in the presence of noise, except we now look in the
space of the experimentally accessible parameters cycle rate
fc and inverse magnetic field m0. The results are shown in
Fig. 4, where we see the same qualitative behavior as shown in
Fig. 3. However, the dynamics are much richer than indicated
by this simple phase diagram. In the following sections, we
give examples of what happens to a nuclear spin ensemble
starting from equilibrium for different parameters and regions
of the phase diagram.

Before proceeding, however, we note that in the absence of
noise, the inhomogeneity of the electron wave function plays a
crucial role. This is because weak inhomogeneity is equivalent
to choosing the number of annuli M to be small and, in this
case, the system moves rapidly to its maximally polarized
state, with In ≈ −Inẑ for all n. Dynamics completely cease in
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FIG. 4. (Color online) Phase diagram as in Fig. 3, except with
varying external magnetic field and without any noise added. The
parameters were scaled with m0 as shown in Sec. III. There is a clear
boundary between saturation at large �0 and instability at lower values
of �0, with appropriately large values of �0 and �−. See Table I for
parameters. The symbols “x” and “o” mark the parameters used for
Fig. 7 below.

this state, as can clearly be seen from Eq. (4), despite the fact
that this state does not correspond to all of the nuclei being
polarized, which would also require In = 3Nn/2. On the other
hand, for strong inhomogeneity, or large M , when the system
is not fully polarized, other terms in Pd compete with the
polarization saturation and sustain the dynamics.25

1. Polarization saturation

When the magnetic field is large or the cycle rate is fast
(i.e., �0  �0), the system rapidly moves toward dark states
(i.e., states with D⊥ = 0), sending pf → 0 without statistical
change in the distribution of Dz, as shown in Fig. 5(a). This
limit is additionally characterized by only a small change in
nuclear polarization, as seen in Fig. 5(b). When the effects of
the |s〉-|T0〉 coupling are important (i.e., �0 ≈ �0), the �0 term
in Eq. (6) causes D⊥ to increase, “rebrightening” the D⊥ ≈ 0
dark states and allowing dynamics to continue. Coupling from
the singlet to the T0 state is an essential ingredient in all of
the effects discussed below. When �0 is significant, dynamics
only stop near zero states with D = 0.

2. Growth of difference fields

Second, we observe the growth of large Overhauser fields.
We consider a prototypical pulse sequence motivated by
experiments with a moderate/large magnetic field, m0 = 0.01.
In this case, over 95% of the trajectories display a growth in
|Dz|, as shown in Fig. 5(c). We observe this behavior over a
range of experimentally accessible magnetic fields and cycle
frequencies. This increase in |Dz| indicates that the spin flips
are occurring predominantly in one dot. We interpret these
results as showing a continuing increase of |Dz|, where the
peak of |Dz(t)| is an artifact of the annular approximation.
Near the peak, many of the annular spins artificially reach their
maximal polarization, at which point they should be broken
into more annuli. Similar trajectories with different M show

the maximum value of |Dz| increasing with M [Fig. 5(d)]. The
physical cause of this increase in |Dz| is not clear, but it is
associated with both �0/�0 and �+/�0 being sufficiently
large. When nuclear spin noise is included, the growth in
〈|Dz|〉e continues.23 This could be the same phenomenon as
seen in Ref. 13, with transverse dephasing helping to produce
the large |Dz| ≈ Bext of that work, though unequal dot sizes
could also produce that effect.23

3. Zero states

For moderate to small magnetic fields, when �0 ≈ �0,
two different characteristic behaviors of particular note are
observed. First, in the physical parameter regimes, which do
not display general motion to zero states, the zero states are
still important for the dynamics, as they are a metastable state.
That is, many trajectories spend a long time with |Dz| near
zero before escaping away to large |Dz|. This phenomenon is
shown in the individual trajectory (thin red line) of Fig. 5(c).

Second, for parameters in our model which are not
experimentally accessible, there is a mechanism that gives
rise to attraction towards zero states. This is illustrated in
Fig. 5(e), where we show an ensemble of trajectories in which
D rapidly reduces toward zero. For the parameters of Fig. 5(e),
the standard deviation of Dz was reduced by a factor of 28.
We remark that as D → 0, the singlet state ceases mixing with
the triplets and nuclear spin dynamics stop. Until something
(outside this model, such as nuclear dipole-dipole coupling)
restores D, the polarization process is shut off, limiting the
total nuclear polarization that can build up. While not shown in
Fig. 5(e), we observe a dramatic reduction of the total |D|, not
just Dz, consistent with this qualitative observation. However,
because we have not observed this phenomenon in any physical
parameter regimes, we shall not study it further.

4. Crossover

For many choices of parameters, we find both trajectories
in which Dz → 0 and |Dz| remains large, depending on initial
conditions, as shown in Fig. 6(a). Note that when we add a
small amount of transverse dephasing to these trajectories, as
shown in Fig. 6(b), the median value of |Dz| does not markedly
change, but there are no longer trajectories with Dz → 0;
the noise apparently disrupts the fragile attraction toward
|Dz| → 0. Simulations performed with parameters intended
to approximate experiments11,13 are in this crossover regime.

5. Stability of zero states

We now investigate more carefully the stability of the zero
states. Near the zero state, the EOM are greatly simplified
because many of the terms in Pd arise from perturbative
processes involving multiple applications of D. Keeping only
the terms linear in D and working to first order in m0, we can
write

Ḋ+ = (�0 + i�−)S∗
z D+ + (�0m0S

∗
z S+ − i�0S

∗
+)Dz, (9)

Ḋz = −Re[(�0 + i�−)D+S∗
−] − �0m0 S⊥ · S∗

⊥Dz, (10)

where we have introduced the variable S∗ = ∑
kd g2

kd Ikd/2.
Because dS/dt,dS∗/dt ∼ O(D), we can neglect the time
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FIG. 5. (Color online) (a),(b) Simulations corresponding to the saturation region of the phase diagram. The solid lines are the median values
of (a) |Dz|, Sz, and (b) D⊥ at each time step in an ensemble of 1000 trajectories. In all plots, shaded regions show the 84th and 16th percentiles.
(c) Simulations showing growth of 〈|Dz|〉 with the time shifted for each trajectory so that its maximum |Dz| occurs at time zero. The bottom
shows the median value of Sz, i.e., 〈Sz〉e, at each time step in an ensemble of 1000 trajectories. In the middle is similar, 〈|Dz|〉e. The thin red line
is a single trajectory. The curve at the top shows the fraction of trajectories contributing to the ensemble at each time; this increases with time
because some trajectories reach their maximum Dz much later than others, while the simulation time is fixed for each trajectory. 4.5% of the
trajectories, which do not show this peak in |Dz|, are not included. Approximately 10% of the trajectories show behavior similar to that shown
in the thin red line, where |Dz| is reduced initially and then goes unstable to large |Dz|. (d) Mean of the maximum value of |Dz| reached on
each trajectory for the same parameters as in (c) (open circles) except M varied between 20 and 160, with 5000 trajectories per point. Closed
circles show similar results with m0 = 0.05, τ = 4 and all other parameters scaled appropriately. The physical system has M → N ≈ 106,
so we interpret this as an instability to large |Dz|, which is supported by simulations including transverse noise (see Sec. IV B2). (e) With
different parameters, simulations showing reduction of 〈|Dz|〉 plotted as in (c) without the time shift. For these parameters, the trajectories have
|Dz| → 0 quickly, without time for strong polarization.

dependence of S and S∗ in the EOM for D near the zero
state. After a long time, the system becomes polarized so
that S∗

z  0; this allows us to adiabatically eliminate D+ to
obtain

D+ = −i�0S
∗
+ + m0�0S

∗
z S+

(�0 + i�−)|S∗
z |

Dz + O(D2), (11)

Ḋz = 0 + O(D2). (12)

This linear stability analysis gives no conclusion about the
stability of the zeros states. This result implies that within this
model, the stability of the zero state is only determined at
higher order. This is a little surprising because, at first glance,
Eq. (10) appears to have an attractive force towards Dz = 0.
This arises from the same mechanism described in Ref. 22;
however, a more careful treatment reveals that this effect
actually cancels. Our simulations indicate that the nonlinear
corrections make the zero state repulsive in the experimentally
relevant parameter regimes. When we include the nuclear spin
noise, we shall show analytically that the system is repelled
from the zero states.

B. Effect of nuclear spin noise

1. Unequal dots

Our results that zero states are unstable to the growth of
large difference fields in the presence of asymmetry in the
size of the dots and nuclear noise can be understood in the
following heuristic picture, first given in Ref. 23. We assume
the nuclear spins have equal spin-flip rates on the two dots,
which is borne out by the analytical and numerical calculations
presented below. Then the buildup of the total Overhauser
field Sz is proportional to −(g� + gr ), where g� (gr ) are the
effective hyperfine interactions on the left (right) dot and the
negative sign arises because nuclear spins are flipped down in
the experimental cycles. Similarly, Dz grows as −(g� − gr ),
so that the ratio

Dz/Sz → (g� − gr )/(g� + gr ). (13)

In this section, we demonstrate a similar result within our
full model. We assume homogeneous coupling and work in
the high-field, large-J limit, where we can set �0 = �− =
0 in Pd . The local noise processes included in Eq. (7) give
rise to a mean decay of the collective nuclear spin variables
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FIG. 6. (Color online) (a) 1000 trajectories were run with initial
conditions chosen from the thermal distribution with no noise. The
mean value of |Dz| is shown in black, and the gray region enclosing
67% of the trajectories. A single trajectory is shown by the thin
red line. For parameters, see Table I. These parameters are not
represented in the phase diagram since they have very large �+.
For these parameters, many trajectories are attracted near D = 0,
as in the single trajectory shown, for extended periods of time. (b)
Trajectories were begun from identical configurations as in (a), but
this time with noise added. With noise included, the metastability of
the zero state is removed, and the gray region is now bounded away
from zero.

and associated fluctuations F� (Fr ), for L̇+(Ṙ+), defined by
〈Fd (t)F∗

d ′(t ′)〉n = 2�2
d δdd ′δ(t − t ′). The semiclassical EOM

for the nuclear spins reduce to

L̇+ = g��0 Lz(L+ − R+)/2 − η L+ +
√

2ηF�, (14)

L̇z = −g�

2
�0 (L2

⊥ − R⊥ · L⊥), (15)

and similarly for R, where η is defined in Eq. (8). From
Eq. (14), we see that if we start in a zero state, Fd will produce
a fluctuation in D⊥, and the contribution to L̇z of the form
−g��0L

2
⊥ results, in the long-time limit, in Lz  −1, and

similarly for Rz. Thus, |L̇z/Lz|  1 and we can treat Lz, Rz

as static to find 〈L2
⊥〉n, 〈R2

⊥〉n and 〈L⊥ · R⊥〉n, which allow us
to find the slow evolution of Lz, Rz.

In particular, assuming Lz, Rz are constant, we can write
the closed set of equations for L+ and R+,

(
L̇+
Ṙ+

)
= �0

2

(
g�Lz −g�Lz

−grRz grRz

) (
L+
R+

)

− η

(
L+
R+

)
+

√
2η

(
F�

Fr

)
. (16)

Introducing the variables(
S̃+
D+

)
= 1

2

(−1 − g�Lz

grRz

1 −1

) (
L+
R+

)
, (17)

we find

S̃+(t) = −
√

η

2

∫ t

−∞
dt ′e−η(t−t ′)

(
F� + g�Lz

grRz

Fr

)
, (18)

D+(t) =
√

η

2

∫ t

−∞
dt ′e−(η+γS )(t−t ′)(F� − Fr ). (19)

Here, γS = −�0(g�Lz + grRz)/2 > 0. We can use this solu-
tion to calculate 〈L2

⊥〉n,〈R2
⊥〉n, and 〈L⊥ · R⊥〉n. For example,

to lowest order in 1/Lz, 1/Rz,

〈L2
⊥〉n = 4η/ḡ

(1 + p)2

×
[
g� + grp

2

2η
+ (g� + gr )p2

2γS

+ 2p(g� − grp)

γS

]
,

(20)

where we have defined p = g�Lz/grRz, ḡ = (g� + gr )/2 and
used the fact that �2

d = gd/ḡ in our units.
Inserting this solution into the EOM for Dz, Sz gives

reduced EOM for the slow, noise-averaged evolution of Dz

and Sz. After some straightforward manipulations, we arrive
at (

Ṡz

Ḋz

)
= g� η

2ḡ

g� gr∣∣Sz
2

∣∣2 E

(
Sz

Dz

)
, (21)

where Sz
2 = (g�Lz + grRz)/2 = −γS/�0, and

E = 1

4R

(
(1 + R)(1 − R2) (1 − R)3

(1 − R)(1 + R)2 −(1 + R)(1 − R2)

)
(22)

and R = gr/g�. After rescaling time to

τ =
∫ t

0
dt ′

g� η

ḡ

g� gr∣∣Sz
2(t ′)

∣∣2 , (23)

this becomes a purely linear system characterized by the
matrix E. For all R > 0, this matrix has one positive and
one negative eigenvalue; thus, it has one growing mode and
one decaying mode. In the long-time limit, both Sz and Dz will
be proportional to their overlap with the growing mode. Thus,
Dz/Sz approaches a constant, which is easily found from E as

Dz

Sz

→ 1 − R2

2R +
√

4R2 + (1 − R)4
. (24)

In Fig. 7, we compare this result and Eq. (13) to the
full numerics including all of the parameters. The horizontal
access corresponds to the left dot decreasing in size from
right to left, since Dz/Sz ∼ (g� − gr )/(g� + gr ); according to
our simple argument, we expect this to result in a positive
ratio of Dz/Sz. In Fig. 7(a), however, we see that for
small asymmetry gr/g� > 0.5, many trajectories have the
opposite sign, which indicates that in this regime, the coherent
instability mechanism (which does not prefer either sign)
competes with the natural asymmetry. For larger asymmetries
gr/g� < 0.5, all trajectories are seen to follow the direction of
the natural asymmetry. Figure 7(b) shows the same simulations
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FIG. 7. (Color online) (a) Asymptotic value of |Dz/Sz| as a
function of dot asymmetry with parameters chosen as in the location
marked with an x in Fig. 4, strongly in the instability regime. The
horizontal access corresponds to the left dot decreasing in size from
right to left, which, by our simple argument, should result in a positive
ratio of Dz/Sz. Trajectories which show the opposite sign indicate a
competition with the coherent instability mechanism. For each value
of dot asymmetry R, we initialized 50 runs in a single initial spin
configuration chosen from the thermal distribution (with Dz = −0.72
and Sz = −1.57). We plot the asymptotic value of Dz/Sz. The runs
that ended with Dz/Sz greater (less) than 0 are shown as red (blue)
points. The circles (crosses) indicate the mean value of the red (blue)
points, with error bars showing the standard deviations. The solid
and dashed lines are given by Eqs. (24) and (13), respectively. (b) As
in (a), with parameters chosen in the location marked with an o in
Fig. 4, strongly in the saturation regime. Here the sign of the ratio
Dz/Sz follows what is expected from the natural asymmetry.

performed in the saturation regime. As there is no coherent
instability mechanism competing with the dot asymmetry, the
sign of Dz is determined by the asymmetry in all but the most
symmetric dots. Dz/Sz is in good agreement with the simple
prediction given by Eqs. (13) and (24).

2. Identical dots

For identical dots, the arguments given in the previous
section break down; however, we shall now show that

for certain parameters, there still exists a mechanism for
self-consistent growth of |Dz|. Growth of |Dz| requires
nonzero D⊥. For intermediate field and exchange, the �0,−
contributions to Pd become comparable to the �0 term. In
particular, the �0Dzẑ term acts as a source term for D⊥
[see Eq. (25)]. Consequently, for weak enough noise, D⊥ will
only be appreciable when |�0Dz/�0Sz| is appreciable, which
provides a self-consistency condition for the continued growth
of Dz.

These properties of identical dots can be seen analytically in
the following limiting case: we assume a wave function where
the coupling takes two values, g1 � g2,η and that initially
−g2Sz � g1 |Dz| � g1, S⊥ ∼ 1 and D⊥ ∼ Dz/Sz  1. We
denote the total angular momentum of nuclear spins in dot
d with coupling constant gk by Jkd and assume J⊥

1d ∼ J⊥
2d ∼

J z
2d  J z

1d so that the majority of the polarization resides in the
strongly coupled spins. We can write a closed set of equations
for the evolution of D and S,

Ḋ+ = g1i�̃−SzD+ − g1i�0DzS+ + g2δi�0Dz(J
+
2� + J+

2r )/2

−g2δi�̃− D+
(
J z

2� + J z
2r

)
/2,

Ṡ+ = −g1i(�0 − �̃−)DzD+ + g2δi�0Dz(J
+
2� − J+

2r )/2

−g2δi�̃−D+
(
J z

2� − J z
2r

)
/2,

Ḋz = g1Im[�̃−D+S−] − g2δIm[�̃−D+(J−
2� + J−

2r )/2],

Ṡz = −g1�0D
2
⊥ − g2δIm[�̃−D+(J−

2� − J−
2r )/2],

J̇+
2d = ±g2i�0DzJ

+
2d ∓ g2i�̃−D+J z

2d − ηJ+
2d + fd,

J̇ z
2d = ±g2Im[�̃−D+J−

2d ],

where the top sign is for d = �, �̃− ≡ �− − i�0, δ ≡ g1 − g2,
fd is a Gaussian, white-noise process derived analogously
to Fd such that 〈fdf

∗
d 〉n = 2ησ 2, and we have neglected to

write the noise terms in the EOM for D+ and S+ because
we have assumed they are higher order. Furthermore, we
can neglect all terms proportional to g2D+J

μ

2d because these
are second order. This leads to the somewhat simpler set of
equations,

Ḋ+ = g1i�̃−SzD+ − g1i�0DzS+

+ g2δi�0Dz(J
+
2� + J+

2r )/2, (25)

Ṡ+ = −g1i(�0 − �̃−)DzD+

+g2δi�0Dz(J
+
2� − J+

2r )/2, (26)

J̇+
2d = ±g2i�0DzJ

+
2d − ηJ+

2d + fd, (27)

Ḋz = g1Im[�̃−D+S−], (28)

Ṡz = −g1�0D
2
⊥. (29)

These equations can be solved perturbatively in 1/Sz, 1/Dz by
the same method as in the previous section. The only difference
in the structure of the two problems is that in this case the
source terms for D+ and S+ are proportional to J+

2d instead
of white noise; as a result, we have to take into account the
coherent evolution of the source term. We can expand the
resulting EOM for Dz in g1Dz/g2Sz to find the noise-averaged
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FIG. 8. (Color online) Phase diagram as in Fig. 4, except with
noise added. The phase diagram is nearly identical. See Table I for
parameters.

equation,

Ḋz = −g1�02 δ2σ 2

(
�2

0

�2
0 + �2−

)

×
(
�2

0 + �2
− − �0�−

)
�2

0 + �2−

g1

g2

(
Dz

|Sz|
)3

, (30)

from which we see that the sign of �2
0 + �2

− − �0�−
determines whether or not there is continued growth of Dz.
Note that the perturbation theory breaks down as g2 → 0. This
reflects the importance of including the coherent evolution of
J+

2d in solving for the dynamics. Without g2, we would have
found Ḋz = 0. This phase boundary is shown as the dashed
line in Fig. 3. In Fig. 8, we show the phase diagram as a
function of cycle frequency and inverse magnetic field, where
we see qualitatively the same behavior as Fig. 4.

V. RELEVANCE TO OTHER CENTRAL-SPIN SYSTEMS

Although this work has focused on lateral double quantum
dots in GaAs, the methods, and some of the results, can be
applied to vertical double dots,35 InAs quantum dots,36,37

silicon-based quantum dots,42 and nitrogen-vacancy (NV)
centers in diamond.43 A few important differences for these
other central-spin systems are that the sign of the electron
g factor may be positive (compared to its negative sign in
GaAs) and the spin-orbit coupling can be much larger in
other systems than it is in GaAs.44 The results presented
in the paper are not dependent on the sign of the g factor.
Changing the sign would reverse the direction of the nuclear
polarization from negative to positive, but all of our analysis
would carry through essentially unchanged. The competition
between spin-orbit coupling and DNP is more dramatic and
can have a qualitative effect on the polarization dynamics for
large spin-orbit coupling.45

VI. CONCLUSIONS

We have shown that dynamic nuclear polarization exper-
iments in double quantum dots give rise to a rich set of

phenomena. We find that after many thousands of nuclear spin
pumping cycles, corresponding to experimental time scales of
several hundred microseconds, the total nuclear polarization
is driven to 10–30% of full polarization. The polarization is
aligned opposite the magnetic field, as opposed to the thermal
polarization. In addition to this large polarization, we find that
the competition between polarization, noise processes, and
coherent evolution mediated by the electrons allows one to
carefully control the final nuclear spin state in the two dots.
We have developed detailed numerical and analytical methods
to theoretically describe such dynamics; however, our analysis
is semiclassical and leaves out effects such as spin-orbit
coupling and a full description of the nuclear dipole-dipole
interactions (which we approximate as nuclear spin noise),
both of which may be important for a complete understanding
of the experiments.

The main implication of the paper for DNP experiments in
double dots is that the nuclear spin dynamics are dominated
by either rapid saturation of polarization or an instability to the
growth of large difference fields. These results are consistent
with the experimental observations reported in Refs. 18, 13,
and 24; however, we see evidence that the dynamics are much
richer as the experiments have not resolved whether or not the
instability to large difference fields results from dot asymmetry
or coherent electron-nuclear interactions. These two cases
could be experimentally distinguished by measuring the sign
of Dz in a given double dot. Furthermore, we showed that the
zero states may be experimentally observable as metastable
states in certain parameter regimes, indicating that there is
still much to explore in the polarization dynamics of double
quantum dots.
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APPENDIX A: PARAMETERS USED IN SIMULATIONS

In Table I below, we provide a summary of the parameters
used in the simulations for each figure. While many parameters
are chosen to be consistent with experiments, not all those
presented are self-consistent or experimentally realistic. In
particular, in Fig. 5(e), the �0 parameter is unphysically large
and, in Figs. 4, 5(a), 5(b), and 8, the small m0 values correspond
to very large magnetic fields.

APPENDIX B: � VARIABLES

In this Appendix, we describe a systematic approach to
coarse graining the electron wave function in solving the semi-
classical equations of motion, which we refer to as the inde-
pendent random variable annular approximation (IRVAA). We
construct a sequence of discretizations of the wave function for
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TABLE I. Parameters used in the simulations shown in the figures of this paper.

Fig. �0 �0 �− �+ �0 �R m0 η M

3 0.5 0.005–0.5 0–0.4 0 0 0 0 0.005 400
4 5 × m0 fc/2 1.25 × m0 5 5 × m0 2.7 × �0 10−3–10−1 0 400
5(a), 5(b) 0.19 1 0.0048 5.8 0.002 2.7 5 × 10−4 0 100
5(c) 0.78 1 0.19 5.8 0.08 1 0.01 0 100
5(e) 1 1 0.25 0.5 1 1 0.05 0 100
6(a) 1.99 1 0.143 626 0.5 2.7 0.01 0 100
6(b) 1.99 1 0.143 626 0.5 2.7 0.01 10−4 100
7(a) 0.014 0.36 0.0034 5 0.014 2.7 × �0 0.0027 4 × 10−4 200
7(b) 0.013 2.1 0.0034 5 0.013 2.7 × �0 0.0027 2 × 10−3 200
8 5 × m0 fc/2 1.25 × m0 5 5 × m0 2.7 × �0 10−3–10−1 10−4 400
9(a) 0 1 0 0 0 0 0 10−3 200 per species
9(b) 0.5 0.005–0.5 0–0.4 0 0 0 0 5 × 10−5 400 per species

which we can provide a rigorous bound on the error in time evo-
lution compared to the exact solution. In the process, we also
introduce a set of statistically independent nuclear spin vari-
ables, which are a convenient basis for numerical simulations.

We see from Eqs. (4) and (6) that the semiclassical evolution
of each spin depends only on the vectors L and R (or,
equivalently, on D and S). That is, if we know Pd (t) (which
depends only on L and R), then we can solve for the dynamics
of the entire system. However, even if we know Pd (t), if we
look at the equation of motion for L, we find that it generates
an infinite hierarchy of equations,

dL
dt

= P l × L∗, (B1)

where we defined L∗ ≡ ∑
k g2

kl ikl . Now L̇
∗

couples to the
variable

∑
k g3

kl ikl , and so on.
To find an approximate solution to the dynamics, we would

like to find an effective method to truncate this infinite hierar-
chy of equations. For simplicity, we focus on the case where
P� is only a function of L, reducing it to a single-dot problem,
and drop the dot indices in the following discussion. We also
work in the continuum limit, which is defined by a nuclear
angular momentum density, I(r,t) = ∑

k ik(t)δ(r − rk).
Each variable in the hierarchy of equations of motion [as in

Eq. (B1)] can be expressed as an integral,

�(t) =
∫

ddrg(r)ϕ[g(r)]I(r,t), (B2)

where ϕ(x) is a polynomial in x. That is, there is a one-to-one
correspondence between polynomials ϕ(x) and the variables
in the EOM. For example, L corresponds to φ(x) = 1.

We would like to think of a truncation procedure as
any procedure that provides a reduced, self-consistent set of
equations describing the evolution of P , and, equivalently, L.
We make a formal definition of a truncation procedure as a
procedure producing a set of variables �k , k = 1, . . . ,M , of
the form above and an M × M matrix Q, such that �1 = L
and

d�k

dt
=

∑
�

P × Qk���.

Since we always constrain �1 = L, we always have φ1(x) = 1.

To construct a convenient basis of nuclear spin variables,
we first define a norm 〈·〉ϕ based on the statistical average of
a nuclear spin variable in the infinite-temperature ensemble,
i.e.,

〈� · �〉ϕ =
∫

ddrddr ′g2(r)ϕ[g(r)]ψ[g(r ′)]〈I(r) · I(r ′)〉e

= I (I + 1)

ad

∫
ddrg2(r)ϕ[g(r)]ψ[g(r)], (B3)

where a is the lattice spacing, 〈·〉e is the ensemble average
over the initial thermal state, and we took

〈
I(r) · I(r ′)

〉 =
I (I + 1)δ(r − r ′)/ad . Now we can construct an orthogonal set
of polynomials with respect to this norm by using the standard
Gram-Schmidt procedure starting from the polynomial 1. This
gives a set of orthogonal polynomials ϕk and associated nuclear
spin variables, �k = ∫

ddr g(r)ϕk[g(r)]I(r,t), which are sta-
tistically independent in the infinite-temperature ensemble,
i.e., (〈�k · �l〉 = 3�2

l δkl), and satisfy �1 = L.
The equations of motion (EOM) for these variables can be

written as

�̇n = P × Qnm�m, (B4)

where the matrix Qmn is a tridiagonal matrix defined by the
recurrence relations

xϕn(x) = Qnn−1ϕn−1 + Qnnϕn + Qnn+1ϕn+1, (B5)

and we used the fact that xϕn(x) only has a nonzero overlap
with ϕn and ϕn±1.

We now define an Mth-order truncation procedure with
respect to the variables �k by setting QMM+1 = 0. The central
result of this Appendix is encapsulated by the following
theorem for this truncation procedure.

Theorem. For a given wave function g(r) and ε > 0,
the above truncation procedure at order M will produce an
effective LM (t) such that |L(t) − L M (t)| < ε for all t < tM ,
where tM is a time scale that increases linearly with M and
L(t) is the exact result for the untruncated system.

We begin our analysis by proving that any truncation
procedure is equivalent to a discretization of the function
g(r) (i.e., an annular approximation), by which we mean a
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representation of L as

L =
M∑

k=1

g(rk) Ĩk, (B6)

where Ĩk is a rescaled nuclear spin variable associated with
position rk .

The reverse implication is clear because if we start with such
a discrete representation, then the variable associated with the
polynomial,

w(x) =
M∏

k=1

[x − g(rk)],

is identically zero. That is, if there are only M discrete spins in
the system, then there are only M statistically independent
variables �k in the system, and �M+1 is naturally zero.
This result naturally truncates Eq. (B4). Consequently, if we
consider any basis of polynomials of degree less than M and
its associated set of spin variables, then we can obtain a finite,
self-consistent set of equations for the evolution of L.

The forward implication follows along similar lines. If
M − 1 is the maximal degree of the set of polynomials {ϕk(x)}
associated with the truncation variables {�k} and �M is the
spin variable corresponding to this polynomial, then, when
we compare to the continuum limit, we find that the statement
that d�M/dt does not couple to higher-degree polynomial
variables implies the existence of a degree-M polynomial
w(x) such that∫

ddrg(r)w[g(r)]I(r,t) = 0,

for any I(r,t). The existence of such a polynomial
immediately implies that we can represent L in the discretized
form of Eq. (B6).

We have now reduced the problem of finding an optimal
truncation procedure to the problem of finding an optimal
discretization procedure for integrals of the form∫

ddrg(r)ϕ[g(r)]I(r,t),

where ϕ(x) is a polynomial in x. Fortunately, this last problem
is solved through the theory of Gaussian quadrature.46 First,
though, we assume that our function g(r) is spherically
symmetric so that we can write our integrals as effective
one-dimensional integrals with respect to the rescaled angular
momentum density

I(r,t) =
∫

d�ad−1N (r)I(r,�,t)/S(d), (B7)

where � parameterizes the surface of a d-dimensional sphere,
a is the lattice spacing, S(d) is the surface area of a unit sphere
in d dimensions, and N (r) ≡ S(d) rd−1/ad−1 is the number
of nuclear spins at radius r; for example, in two dimensions,
N (r) = 2πr/a. The ensemble average of I(r,t) is given by
〈I(r) · I(r ′)〉 = I (I + 1)N (r)δ(r − r ′)/a.

To begin constructing our Gaussian quadrature rules, we
rewrite

�(t) =
∫ ∞

0
drN(r)g2(r)ϕ[g(r)]

I(r,t)

N (r)g(r)

=
∫ 1

0
dx ω(x)ϕ(x)

I[g−1(x),t]

N [g−1(x)]x
, (B8)

where x = g(r) and ω(x) = dg

dr
|g−1(x)N [g−1(x)]x2 is the

weight function. Standard results in the theory of numerical
integration imply the existence of a set of orthogonal polyno-
mials, ϕn, with respect to the inner product

(f,h) =
∫ 1

0
dxω(x)f (x)h(x), (B9)

such that, for any function f (x), the Mth-order quadrature
approximation is given by

∫ 1

0
dxω(x)f (x) ≈

M∑
k=1

ωkf (xk), (B10)

where xk are the zeros of ϕM , and the weights ωk are
determined by the condition that Eq. (B10) is exact for
all polynomials of degree strictly less than 2M . The error
in this formula decreases exponentially in M , or better,
provided that f is smooth.46 In addition, these polynomials
are exactly the ones we used to construct our truncation
procedure. Consequently, our truncation procedure defined
above is equivalent to approximating L in quadrature as in
Eq. (B6) with Ĩk = wk I(rk,t)/g2

kN (rk).
To prove the theorem, we first note that from the defi-

nition, |P(L)| � 1 for all L. Now let p > 0 be such that
|P(L) − P(L

′
)| < p|L − L

′ | for all L and L
′
. We define

Ln(t) ≡ ∫
ddrgn(r)I(r,t), and LM

n (t) is the solution for the
equivalent variable in the truncated system of equations. To
provide bounds on the error propagation, we define δM

n (t) ≡
|Ln(t) − LM

n (t)|. We work in time units where maxr g(r) =
1 and let b = maxn,t |Ln(t)| �

∫
ddrg(r)(I + 1). Now it is

straightforward to show that

δ̇M
n � pb δM

1 + (
1 + pδM

1

)
δM
n+1 � ζ

(
δM

1 + δM
n+1

)
, (B11)

where ζ = max(pb,1 + pε) and, by assumption, we are
restricted to short enough times that δM

1 < ε. By construction,
δM
n (0) = 0 for n < M , while for n > M , δM

n is bounded by the
quadrature error on the integral

∫
ddrgn(r)I(r,0), which is less

than ce−M for a constant c independent of M . Using Eq. (B11),
we can then bound the error on δM

1 � ce−M (e2ζ t − 1). This
implies that the time to make an error of size ε scales as
(1/2ζ ) log(εeM/c + 1) ∼ (M − log c/ε)/2ζ for large M . This
proves the theorem.

For the two-dimensional Gaussian g(r) ∝ e−r2/2σ 2
, the

weight function w(x) = x and the associated orthogonal
polynomials are the Jacobi polynomials. The matrix Q is then
given by standard recurrence relations for Jacobi polynomials.
Once the recurrence relations are known, one can work with the
� variables without converting between the original nuclear
spin variables because the � variables were defined such that
they are initially statistically independent. This is a convenient
numerical approach for these types of central-spin problems,
and it was used in all of the numerics in this work.

APPENDIX C: MULTIPLE NUCLEAR SPECIES

In this Appendix, we include the effects of multiple nuclear
species in our simulations and find that the main results for
both asymmetric and identical results carry through much
the same. First we show how to include multiple species in
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TABLE II. Relative population of the nuclear species, xα ,
effective hyperfine field due to species α, bα , and the gyromagnetic
ratio, γα , for the three nuclear species in GaAs.

75As 69Ga 71Ga

xα 1 0.6 0.4
bα (T) −1.84 −1.52 −1.95

γα ( kHz
mT ) 45.96 64.39 81.81

terms of the collective � variables and then we present the
simulation results.

When multiple species are taken into account, we must
include the Larmor precession of the nuclear spins. In this
case, the EOM take the form

İ
α

kd = γebαv0|ψkd |2 Pd × Iα
kd − ωαẑ × Iα

kd, (C1)

where α is a species index, ωα = γα BextT/τa is the effective
Larmor frequency, bα is the bare hyperfine field of species α,
γα is the gyromagnetic ratio of species α, their values for GaAs
are shown in Table II, Bext is the external magnetic field, and
we have explicitly included the factor T/τa , where T is the
total time of the nuclear pump cycle and τa is the adiabatic
sweep time.

We introduce the projector function πα
kd , such that πα

kd = 1
if there is species α in unit cell k, and 0 otherwise. This allows
us to write

L =
∑
k,α

γebαv0|ψk�|2πα
k� Iα

k�

= ��√∑
α b2

α xα

∑
k,α

bα gk� πα
k� Iα

k�. (C2)

Here we have defined �� to be the standard deviation of Lμ in
the infinite-temperature state, explicitly,〈

Iα
kd · Iα′

k′d ′
〉 = I (I + 1)δkk′δdd ′δαα′ , (C3)

�2
� ≡ 〈L2〉/3 =

∑
k,α

γ 2
e b2

αxαv2
0 |ψk�|4 I (I + 1)

3
, (C4)

where xα = 〈πα
kd〉 is the relative proportion of species α on

the sites it can occupy. For each nuclear species in GaAs
xα is shown in Table II, gkd ∝ v0|ψkd |2 are chosen to satisfy∑

k g2
k I (I + 1) = 3, and I is the total spin of a single nuclear

spin (I = 3/2 for all species in GaAs).
We define the variables

�α
n = 1√

xα

∑
k

gk� ϕ�
n(gk�) πα

k� Iα
k�, (C5)

where ϕ�
n(x) are defined as in Appendix B and are independent

of the species, i.e., ϕ�
0(x) = 1, and∑

k

g2
kdϕ

�
n(gkd )ϕ�

m(gkd )I (I + 1) = 3δnm. (C6)

These definitions have the implication that 〈Lα
n μ · Lα′

n′μ′ 〉 =
δnn′δμμ′δαα′ , and we can draw initial values for each of them
from a normal distribution. Furthermore, we can express

L = ��√∑
α b2

αxα

∑
α

bα

√
xα �α

0 . (C7)

All of these definitions are equivalent for the right dot.
In these variables, the EOM take the form

�̇
α

n = γebα

N
P� × (

εn�
α
n−1 + αn�

α
n

+ εn+1�
α
n+1

) − ωαẑ × �α
n, (C8)

where we have used the definition N−1 = maxk v0 |ψkd |2 to
represent the number of nuclear spins with which the electron
has significant overlap. For a two-dimensional Gaussian wave
function, we have N = 2/3

∑
α xαγ 2

e b2
αI (I + 1)/�2.

In Fig. 9, we include the three nuclear species in the
simulation and show that qualitatively the results from the
single-species case still hold. Figure 9(a) shows the asymptotic
ratio of Dz/Sz as the relative dot sizes are varied, where we

0 0.2 0.4 0.6 0.8 1
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0.2

0.3

0.4

0.5

0.6

0.7
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|D
z
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z
|
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FIG. 9. (Color online) (a) As in Fig. 7, with parameters chosen as in Fig. 2 of Ref. 23, except with three species. Due to the computational
cost of running three species of spins, simulations were run for only 10% as long, and the range of Dz/Sz is larger as a result. The trend that
Dz/Sz is in good agreement with the single-species prediction is clearly visible. (b) Phase diagram with multiple species and m0 = 0.
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see good agreement with the simple prediction given in Sec. I.
In Fig. 9(b), we extract the phase diagram in the simplified
model with only �0,− and �0 nonzero, as in the model of
Ref. 23. As in the single-spin case, we find a saturation regime
at high values of �0/�0 and an instability regime at lower
values. Unlike in the single-spin case, the saturation regime

does not broaden at higher values of �−/�0. The dashed line
is the same as that in Fig. 3, showing the simple prediction for
the phase boundary with a single species, from Ref. 23. The
lower-left side of the phase diagram (the region most easily
reached in experiments) is well described by this prediction,
even with multiple species.

1A. Abragam and M. Goldman, Rep. Prog. Phys. 41, 395
(1978).

2G. Yusa, K. Muraki, K. Takashina, K. Hashimoto, and Y. Hirayama,
Nature (London) 434, 1001 (2005).

3D. C. Dixon, K. R. Wald, P. L. McEuen, and M. R. Melloch, Phys.
Rev. B 56, 4743 (1997).

4G. Salis, D. T. Fuchs, J. M. Kikkawa, D. D. Awschalom, Y. Ohno,
and H. Ohno, Phys. Rev. Lett. 86, 2677 (2001).

5K. Ono and S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004).
6F. H. L. Koppens, K. C. Nowack, and L. M. K. Vandersypen, Phys.
Rev. Lett. 100, 236802 (2008).

7A. S. Bracker, E. A. Stinaff, D. Gammon, M. E. Ware, J. G. Tischler,
A. Shabaev, A. L. Efros, D. Park, D. Gershoni, V. L. Korenev et al.,
Phys. Rev. Lett. 94, 047402 (2005).

8C. W. Lai, P. Maletinsky, A. Badolato, and A. Imamoglu, Phys.
Rev. Lett. 96, 167403 (2006).

9R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M.
K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

10D. Klauser, W. A. Coish, and D. Loss, Phys. Rev. B 78, 205301
(2008).

11D. J. Reilly, J. M. Taylor, J. R. Petta, C. M. Marcus, M. P. Hanson,
and A. C. Gossard, Science 321, 817 (2008).

12S. Foletti, J. Martin, M. Dolev, D. Mahalu, V. Umansky, and
A. Yacoby, arXiv:0801.3613.

13S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby, Nat.
Phys. 5, 903 (2009).

14H. Bluhm, S. Foletti, D. Mahalu, V. Umansky, and A. Yacoby, Phys.
Rev. Lett. 105, 216803 (2010).

15H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky,
and A. Yacoby, Nat. Phys. 7, 109 (2011).

16M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky,
and A. Yacoby, Science 336, 202 (2012).

17S. M. Frolov, J. Danon, S. Nadj-Perge, K. Zuo, J. W. van Tilburg,
V. S. Pribiag, J. W. G. van den Berg, E. P. A. M. Bakkers, and L. P.
Kouwenhoven, Phys. Rev. Lett. 109, 236805 (2012).

18J. R. Petta, J. M. Taylor, A. C. Johnson, A. Yacoby, M. D. Lukin,
C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett.
100, 067601 (2008).

19G. Ramon and X. Hu, Phys. Rev. B 75, 161301(R) (2007).
20H. Ribeiro and G. Burkard, Phys. Rev. Lett. 102, 216802

(2009).
21W. Yao and Y. Luo, Europhys. Lett. 92, 17008 (2010).
22M. Stopa, J. J. Krich, and A. Yacoby, Phys. Rev. B 81, 041304(R)

(2010).

23M. Gullans, J. J. Krich, J. M. Taylor, H. Bluhm, B. I. Halperin,
C. M. Marcus, M. Stopa, A. Yacoby, and M. D. Lukin, Phys. Rev.
Lett. 104, 226807 (2010).

24C. Barthel, J. Medford, H. Bluhm, A. Yacoby, C. M. Marcus, M. P.
Hanson, and A. C. Gossard, Phys. Rev. B 85, 035306 (2012).

25H. Christ, J. I. Cirac, and G. Giedke, Phys. Rev. B 75, 155324
(2007).

26A. Brataas and E. I. Rashba, Phys. Rev. B 84, 045301 (2011).
27M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 110, 086601

(2012).
28A. Brataas and E. I. Rashba, Phys. Rev. Lett. 109, 236803 (2012).
29G. Chen, D. L. Bergman, and L. Balents, Phys. Rev. B 76, 045312

(2007).
30K. A. Al-Hassanieh, V. V. Dobrovitski, E. Dagotto, and B. N.

Harmon, Phys. Rev. Lett. 97, 037204 (2006).
31O. Tsyplyatyev and D. Loss, Phys. Rev. Lett. 106, 106803 (2011).
32W. M. Witzel and S. DasSarma, Phys. Rev. B 77, 165319 (2008).
33W. Yao, R.-B. Liu, and L. J. Sham, Phys. Rev. B 74, 195301 (2006).
34W. A. Coish and D. Loss, Phys. Rev. B 70, 195340 (2004).
35R. Takahashi, K. Kono, S. Tarucha, and K. Ono, Phys. Rev. Lett.

107, 026602 (2011).
36B. Sun, ColinMingEarn Chow, D. G. Steel, A. S. Bracker,

D. Gammon, and L. J. Sham, Phys. Rev. Lett. 108, 187401 (2012).
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