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The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes re-
mains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a
frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus
such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems.
Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals
are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We
present analytic and numerical results determining requirements for pulse durations and the optimal
choice of pulse central frequency, which can be determined from an absorption spectrum. Our results
suggest that for numerous systems, the required experiment could be implemented by many ultrafast
spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could
resolve the standing debate over the nature of coherences in photosynthetic complexes. C 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4903982]

I. INTRODUCTION

While it was often assumed that coherent quantum dy-
namics would not persist at physiological temperatures, the
discovery of oscillatory features in two-dimensional spectros-
copy of photosynthetic systems1–10 has made such systems one
of the prototypes for the nascent field of quantum biology.11,12

Of particular interest is the potential influence of quantum
behavior on the highly efficient energy transport between the
absorption and reaction sites in photosynthetic complexes.13–15

The impact of these coherent signatures upon energy trans-
port has been heavily studied and depends greatly upon the
type of coherences observed.16–24 For this reason, a simple
method for distinguishing between electronic and vibrational
coherences could play an important role in the study of these
quantum biological systems. While quantum process tomog-
raphy25–27 or wavepacket reconstruction techniques28–31 could
provide such a method, these techniques come at the cost of
performing several experiments.32,33 Importantly, as noted in
Ref. 26, two-dimensional broadband spectroscopies exploiting
pulse polarization alone (without color selectivity) cannot, in
general, distinguish electronic and vibrational coherences. An
exception is in the case of a homodimer, which affords a partial
tomography using polarization control.26

An alternative technique is based on pump-probe spectros-
copy. Stock and Domcke showed over twenty-five years ago
that, for a system without electronic coherences, the frequency-
integrated pump-probe signal in the impulsive limit shows no
dependence on time delay, in the Condon approximation.34,35

For studies of vibrational dynamics, this effect is undesirable.36

In Ref. 37, it was realized that this effect could be applied

to the problem of distinguishing electronic and vibrational
coherences. The ease of a pump-probe experiment is a signifi-
cant advantage over other methods proposed for disentangling
contributions from vibrational and electronic coherences.33,38

Real experiments, however, do not have infinitely short, impul-
sive pulses. Here, we show that, using only finite-bandwidth
pulses, vibrational and electronic coherences can be discrim-
inated with extreme prejudice. Indeed, the use of ultrashort-
pulse pump-probe experiments to discriminate between types
of coherences lends itself to a simple recipe, which we outline
here: (1) Use the absorption spectrum of the system to deter-
mine the pulse central frequencies and duration requirements.
(2) Perform several pump-probe experiments with pulses of
decreasing duration, each with a full width half maximum
(FWHM) less than

√
2ln2/5ΣA, where Σ2

A is the variance of
the absorption spectrum (defined in Sec. IV). (3) Considering
only waiting (delay) times without significant pulse-overlap
effects, subtract the average pump-probe signal, and use the
square integral of the remaining signal as a measure of the
magnitude of oscillations. Make a “witness plot” of this oscil-
lation amplitude against the duration of the pulses used. If the
oscillation amplitude decreases monotonically with decreasing
pulse duration (i.e., has positive slope), the signal is vibra-
tional in origin; an electronic or a mixture of electronic and
vibrational coherences will increase monotonically. Each of
these steps is elaborated upon and demonstrated in the follow
discussion. We provide instructions suitable for experimental
implementation. Numerical simulations performed in model
systems indicate that with properly centered pulses, pulses
of sub-120 fs (FWHM) in duration should be sufficient for
discriminating the two types of coherences in many systems.

0021-9606/2014/141(24)/244109/10/$30.00 141, 244109-1 © 2014 AIP Publishing LLC
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II. BACKGROUND AND MODEL

In previous work, it was shown that, within the Condon
approximation and the ultrashort-pulse limit, oscillations in the
pump-probe signal correspond exclusively to electronic oscil-
lations. More precisely, the pump-probe signal can be written
in the reduced electronic basis of the singly excited states.37

This result can be understood from a simple physical picture.
A molecular system is initially in its (non-degenerate) ground
electronic state and some vibrational state. An ultrashort pump
pulse produces a vibronic excitation in an excited electronic
state. If the pump pulse is sufficiently short, the nuclear coordi-
nates are frozen during the excitation. The excited wavepacket
then evolves in the excited state potential energy surface for
some time T before the probe pulse causes another transition. If
the probe pulse is sufficiently short that the nuclear coordinates
are frozen during this transition and the transition dipole is
independent of the nuclear coordinates (Condon approxima-
tion), then the probability of wavepacket transfer is indepen-
dent of nuclear coordinate, and the only interference that can
occur is between different electronic states. Oscillations in the
pump-probe signal are thus attributable to electronic coher-
ences alone in this limit.

Reference 37 suggested this technique could be extended
to pulses of finite duration by collecting the pump-probe signals
with pulses of several different durations, extrapolating to the
impulsive limit. Here, we confirm the success of pulse-duration
extrapolation and discuss the optimal experimental parame-
ters with both analytical results and numerical simulations; in
particular, we highlight the maximum pulse duration for which
the test will function, which we call the witness time TW .

We begin by describing the extrapolation procedure using
numerical data, which also illustrates the issue of the wit-
ness time. We demonstrate this procedure using numerical
simulations on simple systems consisting of either a monomer
(electronic two-level system) or dimer (electronic four-level
system) coupled to one or two harmonic vibrational modes,
respectively. The analytical treatment of Sec. IV considers an
arbitrary number of vibrational modes. Simulations were per-
formed using wavepacket propagation techniques and calculat-
ing wavepacket overlaps; further details on numerical methods
and parameters can be found in Appendix A and in Chap. 6 of
Ref. 32.

We assume that the energy scale separating ground and
excited electronic states is much larger than the vibrational
energies, and we assume the rotating wave approximation for
interaction with the light. The vibrational potential energy
surfaces of the excited electronic states may have different
frequencies (ωe) and equilibrium vibrational coordinates (∆x)
from the ground state vibrational surface. The monomer sys-
tem with a single vibrational mode can then be described by a
Hamiltonian of the form

H =
p2

2
+
ω2

0x2

2
|g⟩⟨g |+

(
Ωe+

ω2
e(x−∆x)2

2

)
|e⟩⟨e|, (1)

where x is the nuclear coordinate including the particle masses,
p is the nuclear momentum, |i⟩ denotes an electronic state, ω0
is the ground state vibrational frequency, Ωe is the electronic
excitation energy, and Planck’s constant ~ is set to 1. A diagram

FIG. 1. Potential energy surfaces for a monomer with a single nuclear degree
of freedom, not to scale. The electronic energy gap Ωe is much larger than
the nuclear energy scale. The equilibrium position of the excited state surface
is shifted by ∆x from the ground state equilibrium.

of the electronic potential surfaces of this system is shown
in Figure 1. The extension to a dimer is straightforward; see
Appendix A for the full dimer Hamiltonian (Eq. (A1)).

We treat the pump and probe pulses as classical Gaussian
electric fields with magnitude at the position of the mole-
cules ϵQ(t) = η

2πσ2
Q

e−iωQ(t−tQ)e−(t−tQ)2/2σ2
Q+ c.c., where Q

= P,P′ for the pump and probe pulses, respectively, with central
frequenciesωQ ≈Ωe, durations σQ, pulse times tP = 0, tP′=T ,
and pulse strength η. We treat the interaction of these pulses
with the system within the dipole approximation. We further
assume the Condon approximation, namely, that the electronic
dipole operator is independent of vibrational state, and neglect
relaxation and dephasing effects other than those caused by the
explicitly modeled vibrational modes. We choose units such
that ω0 = 1, so frequencies are expressed as multiples of ω0
and times as multiples of ω−1

0 . For example, in a system with
a soft vibrational mode of 100 cm−1, times are expressed in
units of 1/ω0= 1/(100×2πc) cm= 53 fs. We describe the shift
in equilibrium vibrational coordinate using both ∆x and the
dimensionless Huang-Rhys factor S=∆2

x/2ω0.39

Our monomer has only one electronic excited state and
thus has only vibrational coherences. It is therefore the simplest
test case for the witness, and we expect its pump-probe signal
to exhibit no oscillations for sufficiently short pulses. Figure
2 shows the numerically determined pump-probe signal for a
monomer with a harmonic vibrational mode for various pulse
durations. To make the oscillatory effects more visible, we
show here the case where the system is initially in the third
excited vibrational state. In all subsequent simulations, unless
otherwise noted, we begin in the ground vibrational state. For
a simulation including thermal and isotropic averaging, see
Fig. 8. The pump-probe signal in Fig. 2 has clear oscillatory
components for each pulse duration. The visibility of these
oscillations decreases as the pulse duration decreases, illus-
trating the value of extrapolation to an ultrashort pulse.

III. ANALYZING THE EXPERIMENTS: WITNESS PLOTS

We are now in a position to discuss how to create an
unambiguous test for discriminating electronic and vibrational
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FIG. 2. Pump-probe signal for a sample monomer with equal pump and
probe durations, as given in the legend in units of ω−1

0 . At long pulse
durations, the spectrum exhibits oscillations, but as the duration is decreased,
the oscillations’ visibility decrease monotonically. Here, ωe = 1.5ω0 and
S = 0.02. In this simulation, the system begins in the third excited vibrational
state; the same results hold in the ground state case, but the oscillations are
less visible due to a larger change of the signal in the pulse-overlap region.
For the ground state case, as well as a full thermal and isotropic simulation of
the same system, see Fig. 8.

coherences through extrapolation to the impulsive limit. To
begin, we note that in Figure 2, there is a steep increase in
the pump-probe signal SPP(T,σP,σP′) at short waiting times.
This steep increase is due to temporal overlap of the pump
and probe pulses, during which the pump pulse is steadily
promoting amplitude to the excited state(s), and does not reflect
the dynamics of interest. We remove these pulse-overlap ef-
fects by analyzing only data after Tmin = 3(σP,max+σP′,max),
where the “max” indicates that the same time cutoff is used
for all choices of pulse duration. We then subtract the mean
of each remaining signal, leaving only oscillatory features.
The oscillatory features at this point correspond in general
to both vibrational and electronic coherences, though for the
monomer, they are solely vibrational in origin. We obtain a
measure of the oscillations by integrating over the magnitude
of the oscillatory portion, giving a total signal of the following
form:

Γ(σP,σ
′
P)=

 Tfinal

Tmin

�
SPP(T,σP,σ

′
P)− S̄PP(σP,σ

′
P)
�2dT,

(2)

where S̄PP(σP,σ
′
P) is the mean value of SPP for T >Tmin.

We plot Γ(σP,σ
′
P) against the duration of the pulses used

with σP = σP′, as in Fig. 3. If the result has positive slope
(i.e., monotonically decreases with decreasing pulse duration),
the coherences are vibrational; if the signal has negative slope,
electronic coherences are present. Note that for a system with
a mixture of vibrational and electronic coherences, this tech-
nique can be generalized by Fourier-transforming the pump-
probe signal with respect to the waiting time T , selecting a
frequency peak, and plotting its amplitude as a function of
the pulse duration used to obtain the pump-probe signal.38,40

This generalized method allows for the nature of a particular
frequency response to be determined. However, if we are inter-
ested only in whether the system has electronic coherences,
the total signal can be used instead. We will proceed under

FIG. 3. Witness plot, i.e., magnitude of oscillations vs. pulse duration, for a
sample monomer, corresponding to the simulated data of Fig. 2. As the pulse
duration decreases to zero, the oscillations decrease. Monotonic behavior is
observed only once the pulse duration is below the indicated witness time
TW .

the assumption that the question of interest is whether or not
electronic coherences are present.

Figure 3 shows the result of this process for the monomer
system with the same parameters as in Fig. 2; as the system in
question is a monomer, the oscillatory response of the system
decreases as the pulse durations approach zero. We refer to
these plots of the oscillatory behavior as a function of pulse
duration as “witness plots,” as they provide the witness for the
nature of the coherence.

Figure 3 shows that the integrated oscillatory signal has
positive slope only for pulse durations less than a critical pulse
duration, which we call the witness time TW , as indicated in
the figure. For longer pulse durations, oscillations in the pump-
probe signal decrease in magnitude because the pulse duration
approaches the vibrational period. This leads to an averaged
pump-probe signal that becomes independent of T in the long
pulse limit; this situation gives a declining oscillatory signal
as σP, σP′ increase, which is unrelated to the physics of the
witness and was described previously.34,36 In Fig. 3, TW is of
the same order as ω−1

0 , which illustrates the general result that
the pulse durations must be shorter than the vibrational period
2π/ω0. Only experiments performed in the witness region
(i.e., with pulse durations less than the witness time) can effec-
tively discriminate between electronic and vibrational coher-
ences. The determination of the witness time is thus of vital
importance for any experimental implementation of the tech-
nique. The selection of the central frequency of the pulses can
affect the witness time; we will discuss optimal experimental
parameters for implementation of the witness in Sec. IV.

Figure 4 shows a witness plot for a coupled dimer, a sys-
tem with both vibrational and electronic coherences. The two
singly excited electronic states are coupled by an electronic
coupling J, as in Ref. 37. As there are two coupled singly
excited electronic states with different transition dipoles, we
expect to see oscillatory components persist even with small
pulse durations. In Figure 4, the integrated oscillatory signal
has negative slope throughout, in contrast to the monomer case,
thus demonstrating a positive witness for electronic coherence.
In a wide variety of prototypical systems simulated, we have
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FIG. 4. Witness plot for a simulated dimer, with parameters J = 1ω0,
S1 = 0.02, ωe,1 = 1.5ω0, S2 = 0.005, ωe,2 = 2ω0, and ∆E1,2 = 0.73ω0
(see Appendix A for details). The amplitude of oscillations in the pump-probe
signal increases as the pulse duration decreases, in contrast to the case of the
monomer shown in Fig. 3, thus indicating a positive witness for electronic
coherence.

found this qualitative behaviour in all those with electronic
coherences. This qualitatively different behavior in the witness
plots thus provides a method to discriminate the nature of
observed coherences.

IV. CHOOSING OPTIMAL EXPERIMENTAL
PARAMETERS

We now discuss how to use standard spectroscopic mea-
surements to choose pulse parameters to estimate and maxi-
mize TW . We conclude that linear absorption measurements are
sufficient to place reasonable bounds on TW , but we will also
consider the information that can be extracted from resonance-
Raman and excited state spectroscopies. Appropriate choice of
central frequencies will maximize the witness time or, equiv-
alently, minimize the pulse bandwidth for which the witness
will function.

In a pump-probe experiment, the experimental parameters
available are the central frequencies, pulse polarizations, pulse
durations, pulse intensities, and propagation directions. Of
these, only the central frequencies, pulse polarizations, and
pulse durations impact the witness. As long as the pulse inten-
sity is kept within the perturbative regime, pulse intensity only
introduces an overall scaling of the signal. Similarly, due to
phase-matching considerations, the direction of the pulse prop-
agation affects the direction of the signal emission, but not the
actual integrated signal, as long as the pump and probe are not
collinear. The central frequencies and pulse durations are vital
to the effectiveness of the witness. Hereafter, we will assume
that all the pulses share the same polarization. Setups with
varying polarizations should yield qualitatively similar results.

We now present a line of reasoning for estimating the
optimal central frequency and pulse duration for a given sys-
tem. The witness functions when the emission and absorption
of light become insensitive to Stokes shifts. For this condi-
tion to hold, the pump pulse must be sufficiently broadband
to excite populations into all excited states with significant
Franck-Condon overlaps, while the probe pulse must be suffi-

ciently broadband to excite population “up” to doubly excited
states and to stimulate emission “down” to the ground elec-
tronic manifold, regardless of the initial and final nuclear
configurations. Spectroscopic techniques that give information
on these “upward” and “downward” vibronic transitions can
thus be expected to give useful information on the optimal
pulse centering and the required bandwidth. Linear absorption,
resonance Raman,41 and excited state spectroscopy41–43 all
give such information.

We describe and justify the procedure to choose the cen-
tral frequencies using analytic expressions for these spectro-
scopic techniques and the pump-probe signal, all within the
wavepacket-overlap approach to spectroscopy.37,41

Let us first consider the simplest case of the absorption
spectrum for a system starting in a thermal distribution, where
pn is the probability of beginning in the nth vibrational eigen-
state of the ground state manifold, denoted by g. The (fre-
quency normalized) absorption spectrum for such a system has
the form41

Sabs(ω)=

i j

µg iµ jg

×

φ,n

pn⟨i,ν(g )n |φ⟩⟨φ| j,ν(g )n ⟩δ(ωφ,gn−ω), (3)

where µab is the projection of the dipole matrix element be-
tween electronic states a and b onto the pulse polarization,
|a,ν(g )

b
⟩ is the direct product of the ath electronic state and the

bth vibrational eigenstate of the ground electronic potential, i, j
sum over all singly excited electronic states, φ denotes vibronic
states in the singly excited manifold, and ωα,β indicates the
frequency difference between states α and β.

We can think of the absorption spectrum as a statistical
distribution and define the mean and variance of the absorption
spectrum accordingly. These concepts are useful in analyzing
the necessary experimental parameters, as we can connect
them to the central frequency and variance of the pulses used in
a witness experiment. We define the mean (ω̄abs) and variance
(Σ2

A) of the absorption spectrum as

ω̄abs =


Sabs(ω)ωdω
Sabs(ω)dω , (4)

Σ
2
A =


Sabs(ω)(ω−ω̄abs)2dω

Sabs(ω)dω . (5)

We also apply this probability-distribution perspective to
resonance-Raman spectroscopy in the following discussion.

We now compare Eqs. (3)–(5) to the pump-probe spec-
trum. We follow Ref. 37 and write an expression for SPP(T)
= SSE(T)+ SESA(T)+ SGSB(T), decomposed into stimulated
emission (SE), excited-state absorption (ESA), and ground-
state bleach (GSB) components; the full expression is pre-
sented in Appendix B. Our analytic model assumes the dipole
approximation, the Condon approximation, and the rotating
wave approximation with Gaussian optical pulses. We do not
assume a specific number of vibrational modes nor do we
include a bath other than the explicitly modeled vibrational
modes. Reference 37 expanded the resulting expressions to
first order in powers of σP, σP′, demonstrating that the witness
functions in the ultrashort-pulse limit; our goal is to choose
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the central frequency of the pulses to minimize any residual
vibrational oscillations.

We expand SPP(T) to second-order in σP, σP′ to find
the most important effects of finite-duration pulses, detailed
in Appendix B. The terms in the resulting expressions can
be classified as (i) non-oscillatory, (ii) oscillatory due to elec-

tronic coherences, and (iii) oscillatory due to vibrational
coherences. Of these components, we are interested only
in the vibrationally oscillatory (VO) components, as they
can produce false positives in the witness. The vibrational
oscillatory portions of the second-order terms are (see
Appendix B)

S(2)
SE,VO

(T)= −1
2
η4σ2

P′


i j pq

µg iµqgµg pµ jg


φ,φ′


n,n′

pn⟨i,ν(g )n′ |φ⟩⟨φ|q,ν(g )n ⟩⟨p,ν(g )n |φ′⟩⟨φ′| j,ν(g )
n′ ⟩

×e−i(ωφ−ωφ′)T �(ωφ,gn′−ωP′)2+ (ωφ′,gn′−ωP′)2�, (6)

S(2)
ESA,VO

(T)= 1
2
η4σ2

P′


i j pq

µ f iµqgµg pµ j f


φ,φ′


n,n′,n′′,m

pn⟨i,ν(g )n′ |φ⟩⟨φ|q,ν(g )n ⟩⟨p,ν(g )n |φ′⟩⟨φ′| j,ν(g )
n′′ ⟩

×⟨ν(g )
n′′ |ν( f )m ⟩⟨ν( f )m |ν(g )

n′ ⟩e−i(ωφ−ωφ′)T �(ω f m,φ−ωP′)2+ (ω f m,φ′−ωP′)2�. (7)

The notation is consistent with the absorption spectrum case,
with the addition that ωP, ωP′ are the pump and probe central
frequencies, respectively, i, j,p,q denote singly excited elec-
tronic states, f denotes the doubly excited electronic state, and
φ,φ′ denote vibronic states in the singly excited manifold. The
SE and ESA terms have VO components due only to the probe
pulse, while the GSB has no VO terms to second order (see
Appendix B).

We want to choose ωP′ to minimize these VO terms,
ideally by using information obtainable from experiments
simpler than pump-probe. Intuitively, ωP, ωP′ should be near
the peak of the absorption spectrum, so all of the vibronic
transitions are excited with approximately similar electric field
amplitudes, even in the case of finite σP, σP′. We develop
two heuristic arguments based on absorption and resonance-
Raman spectroscopies to inform the choice of ωP, ωP′.

Our goal is to minimize (the square integral of) the second-
order VO signal given by S(2)

VO
(T) = S(2)

SE,VO
+ S(2)

ESA,VO
. One

way to proceed is to pick a particular value of T and minimize
S(2)
VO

at that time delay. If this T gives in some sense a typical
value for the VO signal, we expect such a minimization to give
a result similar to the true minimization of

 |S(2)
VO

|2dT .
For the stimulated emission term, consider the case T = 0,

S(2)
SE,VO

(0)= η4σ2
P′µ

2

i j

µg iµ jg


φ,n

pn

×⟨i,ν(g )n |φ⟩⟨φ| j,ν(g )n ⟩(ωφ,gn−ωP′)2, (8)

where µ2 =

µg iµig =


Sabs(ω)dω. Comparison with Eqs.

(3) and (5) shows that S(2)
SE,VO

(0) is proportional to the second
statistical moment of the absorption spectrum about ωP′. Such
a signal is minimized ifωP′ is set to the mean of the absorption
spectrum ω̄abs, giving S(2)

SE,VO
(0) = η4σ2

P′µ
4Σ2

A. This result
provides two key pieces of information: (1) at T = 0, S(2)

SE,VO
is

minimized if the probe central frequency is the mean of the
absorption spectrum and (2) ensuring the transform-limited
pulse is sufficiently broadband to cover the absorption spec-

trum gives an indication of an upper bound on the required
pulse duration. That is, if σP < 1/ΣA, then S(2)

SE,VO
(0) < η4µ4

= S(0)
SE

(0), and we expect that the expansion of SSE,VO(σ,0) in
powers ofσ are converging. In a system with vibrational coher-
ences only, the oscillatory signal will then be dominated by the
lowest order term S(2)

SE,VO
(0), which monotonically decreases

with decreasing pulse duration.
We selected T = 0 as a typical value of S(2)

SE,VO
(T) because

it is easily related to the absorption spectrum. The actual pump-
probe signal at T < 3(σP+σP′) has a pulse-overlap correction
(see the short-time portion of Fig. 2), but this correction does
not appear in Eqs. (6) and (7). Therefore, S(2)

SE,VO
(0) may be

representative of typical values of S(2)
SE,VO

(T). We test the va-
lidity of this heuristic argument numerically and find that when
ωP =ωP′= ω̄abs, the qualitative features of TW are reproduced
by 1/ΣA, see Sec. V. We define a new timescale TA≡ 1/10ΣA
and find numerically that TW ≥ TA. TA then provides a lower
bound on TW that can be determined from the absorption
spectrum.

A similar analysis can be performed for excited state
absorption. Since the model system we use for simulations
does not include a doubly excited state, however, we shall not
discuss it further here, except to note that excited-state spec-
troscopy can be carried out in a variety of ways without neces-
sitating ultrafast pulses or time separation between excitation
and absorption. Excitation can be performed using pulsed or
continuous wave lasers, or even collisional excitation. For
some examples of excited state spectroscopy techniques, see
Refs. 42–46.

The second heuristic argument originates in an examina-
tion of the wavepacket-overlap expression for a resonance-
Raman experiment,41

SR(ωS)=


dωI


p,q, i, j

µg iµqgµg pµ jg

×


n,n′,φ,φ′
pn⟨i,ν(g )n′ |φ⟩⟨φ|q,ν(g )n ⟩⟨p,ν(g )n |φ′⟩⟨φ′| j,ν(g )

n′ ⟩
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FIG. 5. Sample absorption (a) and Raman spectra (b) for a harmonic
monomer with ωe = 0.5ω0 and S = 0.02. Each spectrum results in a
slightly different central frequency and gives a different variance. Frequencies
are expressed with Ωe subtracted.

×
δ(ωS−ωI +ωgn′,gn)

(ωI −ωφ,gn+ iγ)(ωI −ωφ′,gn+ iγ) , (9)

where ωI is the driving frequency, ωS is the emitted fre-
quency, and γ is the spontaneous emission rate (generally
much less than ωI , ωS). In this form of resonance-Raman
spectroscopy, for each ωS, we have chosen to integrate the
signal over all values of ωI . Performing the integral over ωI

gives the signal

SR(ωS)=


p,q, i, j

µg iµqgµg pµ jg

×


n,n′,φ,φ′
pn⟨i,ν(g )n′ |φ⟩⟨φ|q,ν(g )n ⟩⟨p,ν(g )n |φ′⟩⟨φ′| j,ν(g )

n′ ⟩

× 1
(ωS−ωφ,gn′+ iγ)(ωS−ωφ′,gn′+ iγ) . (10)

We further define the resonance-Raman average frequency
as

ω̄R =


SR(ωS)ωSdωS

SR(ωS)dωS

. (11)

The resonance-Raman spectrum exhibits sharp peaks at
ωS = ωφ,gn′ and ωS = ωφ′,gn′, which are generally smaller
than the ωφ,gn dominating Eq. (8), and has the same matrix
elements and frequencies as the stimulated emission term in
Eq. (6). We thus expect that ω̄R gives information on which
intermediate states φ, φ′ and final vibrational state n′ contribute

FIG. 6. (a) Witness time vs. excited state vibrational frequency for a
monomer with S = 0.02, using different techniques to determine the central
frequencies of the pump and probe, as indicated in the legend. Centering
using the absorption spectrum performs best over the range of excited state
frequencies. The predicted witness time TA = 1/10ΣA captures the trend of
TW and is less than the observed witness time with absorption centering. (b)
Central frequencies determined by the different techniques as used in (a).

most to Eq. (6). Choosing ωP =ωP′= ω̄R < ω̄abs should then
suppress these terms, suggesting that improved results might
be obtained by red-shifting ωP, ωP′ from ω̄abs to ω̄R. We
show numerically in Sec. V that the resonance-Raman spec-
trum often overestimates the optimal red shift and that, in our
numerical studies, better results are obtained simply from the
absorption spectrum. The difference between ω̄abs and ω̄R for
some sample systems can be seen in Figs. 6(b) and 7(b). A more
thorough study of these parameters will be considered in future
work.

V. NUMERICAL TESTS OF OPTIMAL PARAMETERS

To test the above heuristics for choosing pulse central
frequencies, we performed pump-probe simulations on a mono-
mer for a variety of parameters, with the pulses centered on
ω̄abs, ω̄R, and (ω̄abs+ω̄R)/2. Example absorption and Raman
spectra are shown in Fig. 5, with the different mean frequencies
indicated.

Figures 6 and 7 show the witness time for a variety of
excited state vibrational frequencies and Huang-Rhys fac-
tors. Pulse central frequencies chosen from the three spectral
methods are shown. Centering using the absorption spectrum
generally maximizes the witness time, while centering using
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FIG. 7. (a) Witness time vs. Huang-Rhys factor for different centering tech-
niques, as in Fig. 6, with excited state vibrational frequency ωe = 1.5ω0.
As in Fig. 6, TA is less than the observed witness time with absorption
centering. (b) Central frequencies determined by the different techniques, as
used in (a).

the resonance-Raman spectra gives poor results with low-
frequency excited state vibrations. At large Huang-Rhys fac-
tors, the Raman spectrum centering method performs best.
Over a large range of parameters, the three methods give
similar results, suggesting that while the witness is sensitive

FIG. 8. Witness plot for a monomer at 294 K, including full thermal and
isotropic averaging. The ground state frequency is 100 cm−1, and the witness
time is 118 fs, with ωe = 1.5ω0 and S = 0.02. The pulse duration is given
in FWHM to better compare with experimental measures. Also plotted is the
witness curve resulting from a system originally only populating the ground
state. The averaging shifts TW from 106 fs in the ground state system to 118
fs in the full system.

to the correct choice of central frequency, it is robust to small
variations about the optimal value.

Also shown in Figs. 6 and 7 is the time scale TA= 1/10ΣA.
Both figures show that TA accurately captures the dependence
of the absorption-centered witness time, and by using pulses
with a duration σP = σP′ < TA, the witness is always seen to
function. In Fig. 7, TA forms an aggressive lower bound for
the witness time TW as S increases, showing that the witness
may be implementable with considerably longer pulses.

Based on these results, we propose a prescription for
determining optimal experimental parameters for the witness:
Obtain the absorption spectrum, center the pump and probe
pulses on its mean frequency ω̄abs, and ensure the pulses have
a time duration variance of less than T2

A (or FWHM of less
than 2

√
2ln2TA). Alternatively, estimates of the required pulse

durations can be obtained through simulations or comparisons
to model systems.

In order to apply our results to physical systems, we
fix ω0 = 100 cm−1, which is similar to important vibrational
modes in a prototypical photosynthetic complex, the Fenna-
Matthews-Olson complex.47 This choice gives a time unit of
53 fs. Fig. 8 shows results similar to Fig. 3 but with full
thermal and isotropic averaging at temperature 294 K. The
system has the same parameters as considered in Figures 2 and
3, with an excited state vibrational frequency of ωe = 1.5ω0
and S = 0.02. The pump and probe pulses are centered at
ω̄abs. For these parameters, representative of a broad variety
of real physical systems, pulses of FWHM ≈ 120 fs or shorter
are sufficient to perform the witness. Pulses with FWHM
in this regime are routinely accessible with modern mode-
locked laser systems. This suggests the technique could be
implemented in many ultrafast spectroscopy labs.

VI. SUMMARY AND CONCLUSION

We have developed a practical implementation of a recently
proposed witness for electronic coherences, in which oscil-
lations in the frequency-integrated pump-probe signal are
uniquely attributable to electronic coherences for optical pulses
in the impulsive limit. By performing pump-probe experi-
ments at a variety of pulse durations and extrapolating to the
impulsive limit, vibrational and electronic coherences can be
discriminated by examining if the oscillatory signals are mono-
tonically decreasing or increasing. This witness functions only
for pulses with a duration less than the witness time TW . We
have further shown both analytically and numerically that TW
can be maximized by centering the pump and probe pulses on
the mean of the absorption spectrum. The analytical results of
Sec. IV include an arbitrary number of vibrational modes, and
numerical simulations with a single vibrational mode confirm
that TW ≥ 1/10ΣA, in terms of the variance of the absorption
spectrum Σ2

A. For parameters chosen for a model system of
biological relevance, pulses with FWHM of approximately
120 fs are sufficient for discriminating between electronic and
vibrational coherences. For systems with faster relevant vibra-
tions, the requirements for pulse durations become accord-
ingly stricter. However, for a large class of excitonic systems,
especially the photosynthetic ones, where the Huang-Rhys
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factors are small, we expect our technique to be important
and readily implementable with commercially available laser
systems, and can potentially resolve the debate over the nature
of coherences observed in photosynthetic complexes, as well
as have wider applications in examining coherent processes in
physical systems.
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APPENDIX A: NUMERICAL SIMULATIONS

The model used in our numerical simulations is outlined
in Sec. II; here, we will discuss the extension from a monomer
to the case of a coherent dimer and describe the numerical
methods.

In extending the model to a dimer, we assume each of
the two sites has a single electronic excitation and vibra-
tional mode. Each site’s vibrational mode is treated as a har-
monic potential surface for the generalized vibrational coor-
dinate. Both ground state vibrational modes have frequency
ω0. Dipole-allowed transitions are from the ground to singly
excited states and from the singly excited to doubly excited
state. We assume the doubly excited state does not exhibit any
binding energy, and the transition dipoles are oriented 90◦ apart
with the ratio of their norms 1:3. The full dimer Hamiltonian
can then be written as

H =
p2

1+ p2
2

2
+
ω2

0(x2
1+ x2

2)
2

|g⟩⟨g |+ �Ωe,1+
ω2

e,1(x1−∆x1)2+ω2
0x2

2

2
�|e1⟩⟨e1|

+
�
Ωe,2+

ω2
0x2

1+ω
2
e,2(x2−∆x2)2

2
�|e2⟩⟨e2|+ �Ωe,1+Ωe,2+

ω2
e,1(x1−∆x1)2+ω2

e,2(x2−∆x2)2
2

�| f ⟩⟨ f |
+J(|e1⟩⟨e2|+ |e2⟩⟨e1|), (A1)

where xi (for i = 1,2) is the nuclear coordinate including the
particle masses, pi is the conjugate momentum, |ei⟩ denotes the
electronic state, ωe, i is the excited state vibrational frequency,
Ωe, i is the electronic excitation energy, ∆x, i is the equilibrium
vibrational coordinate in the electronically excited state, J
is the coupling between the two singly excited states, and
Planck’s constant ~ is set to 1.

In order to perform the numerical simulations, we treat
the light-matter interaction perturbatively and define pertur-
bative higher-order wavefunctions as in Refs. 32, 37, and 41.
These wavefunctions permit calculation of the pump-probe,
absorption, and resonance-Raman spectra. We propagate these
wavefunctions using the split-operator method,48 treating the
action of the pulses as a perturbation moving the vibrational
wavepacket from one electronic state to another. Full details of
our numerical method can be found in Ref. 32. The vibrational
wavepackets were simulated on a grid of 30 points per mode,
with a spacing of 0.5ω−0.5

0 . The total time simulated was 25ω−1
0 ,

in steps of 0.01ω−1
0 , with the action of the pulses treated at

all times. These parameters were rigorously tested for conver-
gence. In order to avoid numerical errors, we used a complex
absorbing potential barrier. The complex barrier was modelled
by the Eckart potential,49 with a width of 3ω−0.5

0 and a complex
amplitude of−10(1+i)ω0. As the wavefunctions of a harmonic
oscillator are spatially confined, this absorbing barrier was not

generally sampled but was included as a precaution and for
extensions to non-harmonic potentials.

APPENDIX B: FULL MODEL EXPRESSIONS

In the main text, we use a wavepacket description of the
pump-probe signal in order to derive bounds on the required
pulse durations for the witness to function. In Sec. IV, these
bounds were found by expanding the full model expressions in
powers of the pump and probe pulse durations and considering
the pulse durations for which this expansion can reasonably be
expected to converge. In this appendix, we derive the expansion
up to second order and demonstrate that the terms presented in
Eq. (6) are the only vibrationally oscillatory terms.

We use the model of Ref. 37. Unlike in the numerics
presented, we do not assume either a monomer or a dimer;
instead, the system considered analytically is more general. In
particular, we assume neither a number of electronic nor vibra-
tional modes—in essence, we allow for an unlimited number
of coupled, singly excited electronic states, though for conve-
nience, we assume a single doubly excited state and that the
ground-to-doubly excited-state transition is dipole forbidden.

In Eqs. (B9)–(B11) of Ref. 37, it was shown that the pump-
probe spectrum can be written as the sum of three terms, SPP(T)
= SGSB(T)+SSE(T)+SESA(T), with those terms given by

SSE(T)=

i j pq

µg iµqgµg pµ jg


φ,φ′,n,n′

pn⟨i,ν(g )n′ |φ⟩⟨φ|q,ν(g )n ⟩⟨p,ν(g )n |φ′⟩⟨φ′| j,ν(g )
n′ ⟩e−i(ωφ−ωφ′)T

×ϵP′(ωφ,gn′)ϵP(ωφ,gn)ϵP(ωφ′,gn)ϵP′(ωφ′,gn), (B1)
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SESA(T)= −

i j pq

µ f iµqgµg pµ j f


φ,φ′,n,n′,n′′,m

pn⟨i,ν(g )n′ |φ⟩⟨φ|q,ν(g )n ⟩⟨p,ν(g )n |φ′⟩⟨φ′| j,ν(g )
n′′ ⟩⟨ν(g )n′′ |ν( f )m ⟩⟨ν( f )m |ν(g )

n′ ⟩

×ϵP′(ω f m,φ)ϵP(ωφ,gn)ϵP(ωφ′,gn)ϵP′(ω f m,φ′)e−i(ωφ−ωφ′)T , (B2)

SGSB(T)=ℜ

i j pq

µg iµqgµg pµ jg


φ,φ′,n,n′

pnϵP′(ωφ,gn)ϵP′(ωφ,gn′)ϵP(ωφ′,gn)ϵP(ωφ′,gn′)

×⟨i,ν(g )n |φ⟩⟨φ|q,ν(g )
n′ ⟩⟨p,ν(g )n′ |φ′⟩⟨φ′| j,ν(g )n ⟩e−iωg n′,g nT


1−Erf

(
−iσP

2ωP−ωφ′,gn′−ωφ′,gn

2

)
, (B3)

where we have corrected typos in Eq. (B11) from Ref. 37 related to the complex conjugations, as well as typos in the signs of the

frequencies, and have relabelled the variable ξ to φ. Furthermore, we have corrected the expression for GSB extensively, starting
from the first line of Eq. (A12) from Ref. 37. Here, ϵQ denotes the electric field amplitude of each pulse at frequency ω, given by

ϵQ(ω)= ηe−σ
2
Q
(ω−ωQ)2/2, where Q = P,P′ for the pump and probe pulses, respectively. When σP,P′→ 0, SGSB(T) is a constant and

SSE and SESA only oscillate if there are coupled electronic states.37 To study the effects of finite-duration pulses, we can expand
Eqs. (B1)–(B3) in powers of σP and σP′.

Expanding these expressions in terms of σP and σP′, the first order terms of SSE and SESA vanish due to the symmetric
Gaussian profile of the pulses, as shown in Ref. 37. The remaining first order term is from the ground state bleach, arising from
the pulse-overlap error functions

S(1)
GSB

(T) =ℜη4

i j pq

µg iµqgµg pµ jg


φ,φ′,n,n′

pn⟨i,ν(g )n |φ⟩⟨φ|q,ν(g )
n′ ⟩⟨p,ν(g )n′ |φ′⟩⟨φ′| j,ν(g )n ⟩e−iωg n′,g nT

(
−iσP

2ωP−ωφ′,gn′−ωφ′,gn√
π

)
.

(B4)

The sum no longer depends on φ. Performing a sum over φ yields ⟨ν(g )n |ν(g )
n′ ⟩= δn,n′. The phase term then vanishes, and the ground

state bleach becomes

S(1)
GSB

(T) = 2ℑη4σP


i pq

µg iµigµg jµ jg


φ,n

pn⟨i,ν(g )n |φ′⟩⟨φ′| j,ν(g )n ⟩ (ωφ′,gn−ωP)√
π

.

To first order then, the ground state bleach also yields a constant background.
The next order terms are second order in σP,σP′, arising from the Gaussian pulse profiles and cross terms in the pulse-overlap

terms. These second order terms are

S(2)
SE

(T) = −1
2
η4


i j pq

µg iµqgµg pµ jg


φ,φ′,n,n′

pn⟨i,ν(g )n′ |φ⟩⟨φ|q,ν(g )n ⟩⟨p,ν(g )n |φ′⟩⟨φ′|q,ν(g )
n′ ⟩e−i(ωφ−ωφ′)T

×
�
σ2

P′(ωφ,gn′−ωP′)2+σ2
P′(ωφ′,gn′−ωP′)2+σ2

P(ωφ,gn−ωP)2+σ2
P(ωφ′,gn−ωP)2�,

S(2)
ESA

(T) = 1
2
η4


i j pq

µg iµqgµg pµ jg


φ,φ′,n,n′,n′′,m

pn⟨i,ν(g )n′ |φ⟩⟨φ|q,ν(g )n ⟩⟨p,ν(g )n |φ′⟩⟨φ′|q,ν(g )
n′′ ⟩⟨ν(g )n′′ |ν( f )m ⟩⟨ν( f )m |ν(g )

n′ ⟩e−i(ωφ−ωφ′)T

×
�
σ2

P′(ω f m,φ−ωP′)2+σ2
P′(ω f m,φ′−ωP′)2+σ2

P(ωφ,gn−ωP)2+σ2
P(ωφ′,gn−ωP)2�,

S(2)
GSB

(T) = −1
2
η4ℜ


i j pq

µg iµqgµg pµ jg


φ,φ′,n,n′

pn⟨i,ν(g )n |φ⟩⟨φ|q,ν(g )
n′ ⟩⟨p,ν(g )n′ |φ′⟩⟨φ′| j,ν(g )n ⟩e−iωg n′,g nT

×
�
σ2

P′(ωφ,gn−ωP′)2+σ2
P′(ωφ,gn′−σP′)2+σ2

P(ωφ′,gn−ωP)2+σ2
P(ωφ′,gn′−ωP)2�.

In the ground state bleach contribution, the pulse-overlap terms once again admit a sum over either φ or φ′, giving ⟨ν(g )n |ν(g )
n′ ⟩

= δn,n′, removing any oscillatory contributions. This yields

S(2)
GSB

(T) = −η4ℜµ2

j p

µg jµpg


φ,n

pn⟨ j,ν(g )n |φ⟩⟨φ|p,ν(g )
n′ ⟩

×
�
σ2

P′(ωφ,gn−ωP′)2+σ2
P(ωφ′,gn−ωP)2�,

which is again a non-oscillatory contribution.
The terms dependent on σP in the ESA and SE contributions have no dependence on n′, and thus admit a summation over the

nuclear degree of freedom. Any oscillations in these terms are then due to the electronic degree of freedom and do not affect the
witness. The surviving VO terms are then given by

S(2)
SE,VO

(T)= −1
2
η4σ2

P′


i j pq

µg iµqgµg pµ jg


φ,φ′

∞
n,n′

pn⟨i,ν(g )n′ |φ⟩⟨φ|q,ν(g )n ⟩⟨p,ν(g )n |φ′⟩⟨φ′| j,ν(g )
n′ ⟩

×e−i(ωφ−ωφ′)T �(ωφ,gn′−ωP′)2+ (ωφ′,gn′−ωP′)2�,
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S(2)
ESA,VO

(T)= 1
2
η4σ2

P′


i j pq

µ f iµqgµg pµ j f


φ,φ′

∞
n,n′,n′′,m

pn⟨i,ν(g )n′ |φ⟩⟨φ|q,ν(g )n ⟩⟨p,ν(g )n |φ′⟩⟨φ′| j,ν(g )
n′′ ⟩

×⟨ν(g )
n′′ |ν( f )m ⟩⟨ν( f )m |ν(g )

n′ ⟩e−i(ωφ−ωφ′)T �(ω f m,φ−ωP′)2+ (ω f m,φ′−ωP′)2�, (B5)

which are Eqs. (6) and (7). We conclude that for the witness
to function, the SE and ESA contributions require σP′ to be
small (i.e., a short probe pulse) while the GSB contributions
do not affect the witness to second order in pulse durations.
These model expressions are compared to other spectroscopic
quantities in the main text.
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