
Spin-polarized current generation from quantum dots without magnetic fields

Jacob J. Krich and Bertrand I. Halperin
Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA

�Received 16 January 2008; revised manuscript received 8 June 2008; published 31 July 2008�

An unpolarized charge current passing through a chaotic quantum dot with spin-orbit coupling can produce
a spin-polarized exit current without magnetic fields or ferromagnets. We use random matrix theory to estimate
the typical spin polarization as a function of the number of channels in each lead in the limit of large spin-orbit
coupling. We find rms spin polarizations up to 45% with one input channel and two output channels. Finite
temperature and dephasing both suppress the effect, and we include dephasing effects using a variation of the
third lead model. If there is only one channel in the output lead, no spin polarization can be produced, but we
show that dephasing lifts this restriction.
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I. INTRODUCTION

The generation and control of spin-polarized currents, in
particular without magnetic fields or ferromagnets, is a major
focus of recent experimental and theoretical work. This in-
cludes the spin Hall effect, which produces spin currents
transverse to an electric field in a two-dimensional electron
system �2DES� with spin-orbit coupling, with spin accumu-
lation at the edges.1 Similarly, the magnetoelectric effect2–4

produces a steady-state spin accumulation when an electric
field is applied to a 2DES with spin-orbit coupling. The ac-
cumulation can be uniform5,6 in the case of uniform Rashba
spin-orbit coupling7 or at the edges of a channel in either the
Rashba model8–10 or with spin-orbit coupling induced by lat-
eral confinement.11,12 Experiments have observed current in-
duced spin polarization in n-type three-dimensional �3D�
samples13 and in two-dimensional �2D� hole systems14,15

with spin polarization estimated to be up to 10%.15 Further
work suggests that a spin-polarized current can be produced
in quantum wire junctions,16,17 by a quantum point contact
�QPC�,18,19 in a carbon nanotube,20 in a ballistic ratchet,21 in
a torsional oscillator,22 in vertical transport through a quan-
tum well,23 or in disordered mesoscopic systems.24

Here we show that generating a polarized current from an
unpolarized current is a generic property of scattering
through a mesoscopic system with spin-orbit coupling. We
propose using many-electron quantum dots �outside the Cou-
lomb blockade regime� with spin-orbit coupling to produce
partially spin-polarized currents without magnetic fields or
ferromagnets. Due to the complicated boundary conditions
of the quantum dot, we do not solve for the spin polarization
in terms of any particular spin-orbit coupling model, geom-
etry, and contact configuration. We estimate the effect for a
ballistic system in the limit of strong spin-orbit coupling by
performing a random matrix theory �RMT� calculation for
the spin polarization, allowing consideration of realistic
quantum dot devices robust to details of shape and contact
placement. Finely tuned systems should be able to exceed
these polarizations, but these results provide a useful bench-
mark for whether a particular tuned system is better than a
generic chaotic one. We use a density-matrix formalism
throughout, which allows us to develop straightforwardly a
spin-conserving dephasing probe, using a variant of the third

lead technique for accounting for dephasing. Dephasing and
finite temperature both reduce the expected polarization.
Without dephasing, we find that if there is only one outgoing
channel then no spin polarization is possible, which was first
shown simultaneously by Zhai and Xu25 and Kiselev and
Kim.26 Interestingly, with dephasing, spin polarization can be
produced with only one outgoing channel. The case of polar-
ized input currents will be discussed elsewhere.27 Analogous
calculations have been performed by Bardarson et al.28 in a
four-terminal geometry to study the transverse spin current
produced by an applied charge current.

II. SETUP AND SYMMETRY RESTRICTIONS

We consider noninteracting electrons in a quantum dot
with two attached leads connected to large reservoirs. For
any electron current entering from the leads, we can describe
the output state in the leads in terms of the S matrix of the
dot, including any tunnel barriers between the leads and the
dot. We assume negligible spin-orbit coupling in the leads
and consider the lead on the left �right� to have N �M� spin-
degenerate channels at least partially open at the Fermi en-
ergy and let K=N+M. As usual, the channel wave functions
are normalized so all channels have the same flux. The
S-matrix S is a 2K�2K unitary matrix of complex numbers.
For spin 1/2 particles with spin-orbit coupling, however, it is
convenient to consider S to be a K�K matrix of 2�2 ma-
trices. We represent these 2�2 matrices using quaternions,
where a quaternion q=q�0�12+ i��=1

3 q�����, where �� are the
Pauli matrices and q����C. We give a brief introduction to
quaternions in Appendix A. The quaternion representation is
convenient, as the time-reversal operation for a scattering
matrix can simply be written as S→SR, where R gives the
quaternion dual �which takes the transpose and sends
q�1,2,3�→−q�1,2,3� �see Appendix A��.29 The S matrix of a sys-
tem with time-reversal symmetry �TRS� is self-dual.

If win �wout� is the K�K quaternion density matrix of the
incoming �outgoing� current, wout=SwinS†. The density ma-
trix describing the unpolarized incoherent combination of all
N incoming channels is

win =
1

2N
�1N

0M
� . �1�

That is, win= PL /2N, where PL is the projection onto the
channels of the left lead. We choose tr win=1 /2 due to the
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quaternion trace convention �see Appendix A�, so win repre-
sents one incident electron.

The Landauer-Büttiker formula gives the conductance in
terms of the S matrix.30 We write the K�K quaternion S
matrix as

S = �r t�

t r�
� ,

with r �r�� being the N�N �M �M� reflection matrix and t
�t�� the M �N �N�M� transmission matrix. Then we write
the Landauer-Büttiker formula in units of 2e2 /h as

G = tr�tt†� = tr�PRSPLS†� = 2N tr�PRSwinS†� = 2N tr�PRwout� ,

�2�

where PR is the projection onto the channels of the right lead.
Since win is normalized to represent one input particle enter-
ing the system, g=2 tr�PRwout� is the probability for that par-
ticle to exit through the right lead. The conductance is N
times this probability, so we call g the conductance per chan-
nel in the left lead.

Similarly, we define a vector spin conductance25 �i.e., exit

spin current divided by voltage� G� s in units of e /2� as

G� s = tr��� tt†� = 2N tr��� PRwout� . �3�

Then

gs� = 2 tr��� PRwout� �4�

is the spin conductance per channel in the left lead. Hence,
g�

s is the � component of the spin polarization of the exit
current times the probability of exiting into the right lead.
Thus, the spin polarization of the current in the right lead is

p� =gs� /g, with �p��1.

We can, of course, construct g, gs�, and p� using only the S
matrix and not the density matrices win and wout. The density-
matrix approach, however, gives the flexibility to consider
arbitrarily correlated states of incoming current and also to
look for arbitrary correlations in the outgoing current.27 We
will also use it to straightforwardly derive a method of ac-
counting for nonmagnetic dephasing in a device with spin-
orbit coupling. To complete the translation to the standard
notation of conductances, we consider sending up- or down-
polarized electrons into a sample and collecting either up- or
down-polarized electrons, giving a conductance matrix31

G = �G↑↑ G↑↓

G↓↑ G↓↓
� , �5�

with the total charge conductance being G=G↑↑+G↑↓+G↓↑
+G↓↓. G�,�� is the conductance for an input current of spin
�� and an exit current of spin � for � ,��= ↑ ,↓. We translate
the quaternion representation into the standard notation by
noting that the up-polarized incoherent input current has in-
put density matrix w↑

in=
1+�3

2N PL. The output density matrix is
w↑

out=Sw↑
inS† and the portion representing the output in the

right lead is t
1+�3

2N t†. The Landauer-Büttiker formula gives, in
units of 2e2 /h,

G↑↑ = N tr�PR
1 + �3

2
w↑

out� = tr�1 + �3

2
t
1 + �3

2
t†� . �6�

Similarly,

G↓↑ = tr�1 − �3

2
t
1 + �3

2
t†� , �7�

G↑↓ = tr�1 + �3

2
t
1 − �3

2
t†� , �8�

G↓↓ = tr�1 − �3

2
t
1 − �3

2
t†� , �9�

from which we see that G=tr�tt†�, which is the usual
Landauer-Büttiker formula.30

Though there are several proposed spin-orbit coupled sys-
tems that demonstrate spin polarization from unpolarized in-
put, in many cases the effect is subtle.18,19,21,32,33 Here we
give a simple, idealized thought experiment to show that
time-reversal symmetry does not forbid generating a spin-
polarized current from an unpolarized input current. Con-
sider a system with N=1 and M =2, as illustrated in Fig. 1.
All input electrons are incident on a perfect skew scatterer,1

which sends spins quantized in the +z direction into exit
channel 1 and spins quantized in the −z direction into exit
channel 2. Exit channel 2 has a region with Rashba spin-orbit
coupling7 which is precisely of the strength and length nec-
essary to rotate −z spins to +z. Thus, all spins incident from
the left lead exit with their spins up, and the system respects
TRS, since skew scattering and Rashba spin-orbit interaction
are each time-reversal symmetric.

We illustrate by constructing S explicitly. We can express
the scattering matrix for this thought experiment �up to an
overall phase� in the 6�6 and 3�3 representations as

S =	
0 0 0 0 0 − 1

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 ei� 0

0 1 0 0 0 0

0 0 − ei� 0 0 0


 , �10�

FIG. 1. �Color online� A special model quantum dot with N=1
channels in the left lead and M =2 channels in the right lead. A
skew scatterer sends all ẑ spins to the top channel and all −ẑ spins to
the bottom channel. The shaded area in the bottom channel has
Rashba spin-orbit coupling of precisely the strength to rotate a
down spin at the Fermi energy to an up spin, thus producing a
perfectly spin-polarized exit current from any input current, while
respecting time-reversal symmetry.
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�
1

2	 0 1 − �z − �x − i�y

1 + �z 0 ei���x − i�y�
�x + i�y − ei���x − i�y� 0


 , �11�

where �� �0,2�� and r and t have been determined by the
above description, while the rest of the matrix is given by
TRS and unitarity. The unpolarized input quaternion density
matrix is

win = 	1/2
0

0

 ,

giving

wout = SwinS† =
1

4	0 0 0

0 1 + �z 0

0 0 1 + �z

 , �12�

so Eq. �4� gives gs�= p� = ẑ, as stated above.
We now prove that having at least two channels in the

outgoing lead is essential. That is, for a dot with TRS and K
channels in attached leads, if an unpolarized equally
weighted incoherent current is sent into N=K−1 of the chan-
nels, then the spin polarization in the remaining channel
must be zero. This result has been shown before,25,26 but the
quaternion formalism with density matrices makes it particu-
larly transparent, so we include the proof here.

We start with

win =
1

2N
�1N

0
� =

1K − PK

2N
, �13�

where PK is the projection onto the Kth channel. The quater-
nion scattering matrix satisfies S=SR since TRS is unbroken,
and

wout =
SS† − SPKS†

2N
=

1K − SPKS†

2N
. �14�

Note that S=SR implies both S†=S� and Sii�C for i
=1, . . . ,K �see Eq. �A3��.

Using Eq. �4�, the spin conductance is g�
s =2i�wKK

out����,
where �q���� is the � component of the quaternion q. In par-
ticular, if wKK

out has no quaternion part, then g�
s =0. We have

wKK
out =

1 − SKKSKK
�

2N
, �15�

and SKKSKK
� is real, so wKK

out �R and gs�=0. This proof applies
with channels that are fully open or have tunnel barriers, as it
requires only that the S matrix satisfies TRS and unitarity,
which are unchanged by tunnel barriers. We note further that
if K�2 then �1� the reflected current in any of the K−1 input
channels can be spin polarized and �2� if the input current
goes through less than K−1 channels, then the remaining
channels can have a spin polarization, as shown in the ex-
ample of Fig. 1.

III. RANDOM MATRIX THEORY

The device illustrated in Fig. 1 cannot easily be made, but
realistic devices with spin-orbit coupling will show a similar
�albeit weaker� spin current generation. An intuitive picture
for the generation of spin currents from an applied voltage in
a realistic device is to consider the case with N=1 and
M �1. A current of spin-up electrons incident from the left
has some probability to exit in each of the M channels of the
right lead, each associated with a spin-polarization direction;
in the strong spin-orbit limit, these spin polarizations can
have arbitrary directions. The same is true for a current of
spin-down electrons incident from the left. As illustrated in
Fig. 2, a charge current entering from the left is a combina-
tion of these spin-up and spin-down currents. The spin po-
larization of the current in the right lead is given by the sum
of the spin polarizations of each of the 2M currents in the
channels of the right lead, weighted by the probability of the
particle to enter that channel. Despite the presence of time-
reversal symmetry, there is no requirement that this polariza-
tion sums to zero, as seen explicitly in the example of Fig. 1.
In the chaotic strong spin-orbit limit, these 2M vectors are
�almost� uncorrelated, and their sum will generically be non-
zero. As M or N are increased, however, there are more
independent vectors contributing to the sum, which generally
brings the sum closer to zero. We formalize this intuition
using random matrix theory.

We estimate the expected spin polarization in realistic
situations by using random scattering matrix theory. We as-
sume that the mean dwell time 	d=2�
 /K� of particles in
the dot is much greater than the Thouless time 	Th=Ld /vF,
where K is the number of fully open orbital channels at-
tached to the dot, �=2�
2 /mA is the mean orbital level
spacing, m is the effective mass, A is the area of the dot, vF
is the Fermi velocity, and Ld is a typical length scale of the

FIG. 2. �Color online� Generic device with one input channel.
Unpolarized current, consisting of equal parts spin-up and spin-
down components, is incident on a chaotic quantum dot from a
single channel on the left. The irregularly shaped region in the
middle is a quantum dot in the strong spin-orbit regime. The
spin-up incident current has a probability to exit into each of the
three channels of the right lead with a different spin direction in
each channel, indicated by the direction of the dark arrows. Simi-
larly for the spin-down incident current, indicated by the light ar-
rows. The exit channels are shown spatially separated, for conve-
nience. There is also a probability to scatter back into the left lead
�not shown�. The total spin current in the exit lead is given by
summing the probabilities and directions of the six spin polariza-
tions shown, which is the meaning of Eq. �4� and is indicated by the
arrow on the right.
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quantum dot. We further assume the strong spin-orbit limit,
where the spin-orbit time 	so is much less than 	d. Since 	d
=mA /
K, for a sufficiently large A, even a material with
“weak” spin-orbit coupling will be in the strong spin-orbit
limit. The crossover from weak to strong spin-orbit coupling
in chaotic quantum dots has been studied in the K�1 limit in
the context of adiabatic spin pumping.34

For dots with strong spin-orbit coupling, we assume that
the S matrix is chosen from the uniform distribution of uni-
tary matrices subject to TRS, called the circular symplectic
ensemble �CSE�.29,35 We find the root-mean-square �rms�
magnitude of the spin conductance on averaging over the
CSE, which gives the typical spin conductance magnitude to
be expected from chaotic devices. Such an averaging can be
realized in practice by small alterations of the dot shape.36,37

By symmetry, �g�
s =0 for �=1,2 ,3. Using Eq. �4�, we

evaluate

��gs�2 = 4�tr���PRSwinS†�tr���PRSwinS†� , �16�

where we sum over �.
We use the technique for averaging over the CSE de-

scribed by Brouwer and Beenakker in Sec. V of Ref. 38. We
just need two generic averages, which we will use repeat-
edly. The first is of the form �F1�S�= �tr�ASBS†�, where A
and B are constant K�K quaternion matrices and the aver-
age is taken over S chosen from the CSE of K�K quaternion
self-dual matrices. Then38

�F1 =
1

2K − 1
�2 tr�A�tr�B� − tr�ABR�� . �17�

The second average we need is �F2�S�
= �tr�ASBS†�tr�CSDS†�, where A, B, C, and D are constant
K�K quaternion matrices and AB=AD=CB=CD=0. We
find38

�F2 =
1


��K − 1��4 tr A tr B tr C tr D + tr�AC�tr�BD��

− �tr A tr C tr�BD� + tr�AC�tr B tr D�� , �18�

where =K�2K−1��2K−3�.
Using Eq. �18�, we find

��gs�2 = 3
M�M − 1�

N
, �19�

where we used tr���PR�=0, tr�PR
2�=M, tr win=1 /2, and

tr��win�2�=1 /4N. Note that when M =1, ��gs�2=0, consistent
with the general symmetry.

If we are interested in the mean-square polarization of the
exit current, �p2= ��gs�2g−2, we can approximate it by
��gs�2 / �g2. This approximate form is useful for analytical
progress and will be compared with numerical results. Using
Eq. �17�,

�g =
2M

2K − 1
, �20�

which, combined with Eq. �19�, gives

�p2 �
3�M − 1��2K − 1�
4MNK�2K − 3�

. �21�

We study the approximation ��gs�2g−2���gs�2 / �g2 nu-
merically. We choose a 2K�2K complex Hermitian matrix
from the Gaussian unitary ensemble29 and find the unitary
matrix U which diagonalizes it. We multiply columns of U
by random phases, map U into a K�K matrix of quater-
nions, and construct unitary self-dual S by setting S=UUR,
giving S chosen from the CSE.39

Figure 3 shows the numerical and analytical results,
which agree quantitatively for �g2 and ��gs�2 and qualita-
tively for �p2. The largest percentage disagreement for �p2
is 7%.

IV. DEPHASING

We add dephasing to this setup using the dephasing volt-
age probe technique.40–42 We add a fictitious voltage probe
drawing no current with N�=2�
 /�	� fully open orbital
channels, so the time for escape into the dephasing lead is
the dephasing time 	�. If the dephasing process is spin inde-
pendent, then it is appropriate to conserve the spin of the
reinjected electrons, and we extend the third lead model to
allow this. If, however, dephasing processes relax the spin,
then it is appropriate for the dephasing lead to reinject unpo-
larized current, preserving only electron number. We con-
sider both of these models, with emphasis on the first, as it is
new in this work.

In our formulation, we explicitly model reinjection of
electrons from the fictitious voltage lead by modifying win to

1 3 5 7
0

0.2

0.4

M

<(gs)2>1/2

1 3 5 7
M

<p2>1/2

1 3 5 7
0

0.5

1

M

<g>

N=1

N=2

N=3

N=4

FIG. 3. �Color online� Numerical �symbols� and analytical
�lines� results for normalized mean conductance �g, rms spin con-
ductance gs, and rms spin polarization p of current exiting a chaotic
quantum dot with N �M� channels in the entrance �exit� lead. An
average over 60 000 S matrices from the CSE was performed for
each data point. The lines are from Eqs. �19�–�21�.
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include incoherent reinjection from the dephasing lead. In
either model of dephasing, the reinjection matches the total
charge current absorbed by the dephasing lead but distributes
the charge current evenly between the channels and removes
the correlations. In the spin-conserving case, the reinjection
also preserves the spin current. Consider ��

=tr���P�Sw0
inS†�, where �=0,1 ,2 ,3, �0=12, P� is the pro-

jection operator onto the dephasing lead’s channels, and w0
in

is the input density matrix. Then 2�0 is the probability for a
particle to enter the dephasing lead, and 2�� is the spin con-
ductance into the dephasing lead, which is proportional to
the spin current into the dephasing lead.

We reinject from the dephasing lead with

w1
� = �0K

c�
1 ��1N�

� = c�
1 ��P�, �22�

where we sum over repeated index �. To preserve both spin
and charge currents, we set c�

1 =�� /N�. Some of this rein-
jected current reflects back into the dephasing lead, so it
must be reinjected again. We define a 4�4 complex matrix
���=tr���P�S��P�S†�, which gives the charge/spin current
in the dephasing lead due to this reinjection. Defining win

=w0
in+w�

in, this procedure gives

w�
in = �

n=1

�

wn
� = P��� tr���P�Sw0

inS†��
n=1

�
��n−1���

N�
n

= P��� tr���P�Sw0
inS†��N���� − ����−1, �23�

where we sum over repeated indices � ,�=0,1 ,2 ,3. This
result holds for any input current, not just the unpolarized
incoherent w0

in discussed here.
We approximate w�

in by replacing ��� with its average in
Eq. �23�, similar to Eq. �21�. Using Eq. �17�,

���� =
N�

2K� − 1
�2�N� − 1���0��0 + ���� , �24�

where K�=N+M +N�. We further replace tr���P�Sw0
inS†� by

its average,

�tr���P�Sw0
inS†� =

��0N�

2K� − 1
, �25�

which gives

win � w0
in + P�/2K . �26�

Note that Eq. �26� satisfies unitarity only on average; the
total probability of exiting either through the right or left
lead equals 1 only on average.

In the case of a spin-relaxing dephasing lead, Eq. �23�
becomes

w�
in = P�

tr�P�Sw0
inS†�

N� − tr�P�SP�S†�
. �27�

Interestingly, approximating by taking averages separately of
the numerator and denominator gives the same answer as in
Eq. �26�.

As is clear from Eq. �26�, the approximations of Eqs. �24�
and �25� result in unpolarized reinjection from the dephasing

lead. Averaging these terms separately removes the coher-
ence between the injected spin and the reinjected spin, so
they separately average to spinless quantities. As a result,
this approximation reproduces the effect of a spin-relaxing
dephasing lead. In fact, we find that Eq. �26� matches the
exact numerical results for a spin-relaxing lead better than it
matches the exact results for a spin-conserving lead, which is
consistent with this understanding of the approximations in
Eqs. �24� and �25�.

Using Eqs. �26� and �18�, we find

��gs�2 �
3M

N�
�M − 1 + N�

M2 + N�M − 1�
K2 � , �28�

where �=K��2K�−1��2K�−3�.
Note that Eq. �28� predicts an output spin polarization in

all cases with N��0, including when there is only one out-
going channel, M =1. Numerical results for the spin-
conserving dephasing lead, using Eq. �23�, are shown in Fig.
4, and they show an rms spin conductance in agreement with
Eq. �28� except for N�=M =1. In the special case of N�

=M =1, an exact treatment shows that gs�=0, contrary to Eq.
�28�, even with arbitrary tunnel barriers between the leads
and the sample, as shown in Appendix B. Appendix C con-
tains explicit examples of dephasing-induced spin polariza-
tion in the case M =N=1 in both the spin-conserving and
spin-relaxing cases. Numerical results for the spin-relaxing
dephasing lead are not shown in Fig. 4, but fall very close to
the corresponding lines for the analytic results, even for the

1 3 5 7
0

0.2

0.4

M

<(gs)2>1/2

1 3 5 7
M

<p2>1/2

1 3 5 7
0.5

0.75

1

M

<g>

Nφ=1

Nφ=2

Nφ=3

FIG. 4. �Color online� Model with spin-conserving dephasing
lead. Numerical �symbols� and analytical �lines� results for normal-
ized mean conductance �g, rms spin conductance gs, and rms spin
polarization p of current exiting a chaotic quantum dot with N=1
channel in the entrance lead. M and N� are the numbers of channels
in the exit and dephasing leads, respectively. An average over
60 000 S matrices from the CSE was performed for each data point.
The lines are from Eqs. �28� and �29�.
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case N�=M =1. �A finite spin polarization is allowed in this
case, with a dephasing lead that relaxes spin.�

It may seem surprising that dephasing can produce spin
polarization in the case M =1, where none would be pro-
duced in the absence of dephasing. Clearly, the presence of
the dephasing lead violates the conditions of the proof in

Sec. II that M =1 implies gs�=0, but it is not obvious that
dephasing will nonetheless produce polarization, indeed, a
single-channel spin-conserving dephasing lead does not, as
shown in Appendix B. Nevertheless, we may consider
whether the production of spin polarization with M =1 is an
artifact of the particular third lead dephasing models studied
here or a real consequence of inelastic dephasing processes.
To further explore this question, we have considered two
further variants of the third lead dephasing model.

One could modify the spin-conserving dephasing model
to have N� dephasing leads each with one channel, each
separately reinjecting the same charge/spin that it absorbs. In

this model, too, we find that a nonzero gs� can be produced
for N��1 �results not shown�.

Brouwer and Beenakker43 modified the third lead dephas-
ing model to make dephasing uniform in phase space by
placing a tunnel barrier with transparency � between the
dephasing lead and the dot, with �→0 and N�→� while
maintaining �N�=2�
 /�	�. The S matrix is then not drawn
from the CSE, and simple analytical results in the spin-orbit
coupled system are challenging. We have studied the spin-
conserving variant of this model numerically and find that
for fixed 	�, it gives qualitatively similar results to the sim-
pler model described above; in particular it also gives a non-
zero spin current when M =1 �results not shown�.

All variants of third lead dephasing models considered
here show dephasing-induced spin currents with M =1. With-
out a microscopic model of dephasing, however, we cannot
rule out the possibility that this effect is an artifact of third
lead dephasing models in general. This dephasing-induced
polarization is worthy of further study and will be important
to consider when designing devices based on the lack of spin
polarization with M =1.44

Finally, returning to the single dephasing lead with �=1,
we estimate �p2���gs�2 / �g2, as in Sec. III, where we
modify �g to include the dephasing lead. Using Eqs. �17�
and �26�, we have

�g �
2MK�

K�2K� − 1�
. �29�

We estimate �p2 using Eqs. �28� and �29�. Comparison of
these approximations to numerical evaluations is shown in
Fig. 4. Again we find that the numerical and analytical re-
sults agree qualitatively, except when N�=M =1.

V. FINITE BIAS AND TEMPERATURE

If the source-drain bias V or the temperature T is large
enough, the polarization will be further suppressed by elec-
trons of different energy feeling uncorrelated scattering ma-
trices. This effectively increases the number of orbital chan-
nels, which decreases the residual polarization. First consider
infinitesimal bias at temperature T. Adapting Datta,45 we take

win��� = −
� f

��

1

2N
�1N

0M
� , �30�

where f��� is the Fermi distribution. If the scattering matrix
for particles of energy � is S���, then wout���
=S���win���S†���. We approximate S��� as correlated only
within energy intervals of scale given by the level broaden-
ing due to escape into the leads ��=�K /2 �see Ref. 46 for
an equivalent treatment�. That is, we take

�Sab���Scd
† ���� = ����� − ����Sab���Scd

† ��� , �31�

and

�Sab���Scd����Sef
† ���Sgh

† ����

= �Sab���Sef
† ����Scd����Sgh

† ����

+ ����� − ����Sab���Scd���Sef
† ���Sgh

† ��� , �32�

which are valid only for T���, which is often true for cha-
otic quantum dots. For T���, �S���S†��� can be calculated
using the random Hamiltonian method.47

We need an average over a new function,

h��,��� = f����f�����tr�AS���BS†����tr�CS����DS†����� ,

where AB=AD=CB=CD=0 and f�=�f /��. We evaluate the
average of h with the K�K quaternion matrix S��� chosen
from the CSE along with Eq. �32�, giving

� d�d���h��,��� =
4

�2K − 1�2 tr A tr B tr C tr D +
��


� d�f����2

���K − 1��4 tr A tr B tr C tr D + tr�AC�tr�BD�� − tr A tr C tr�BD� − tr�AC�tr B tr D�

=
4

�2K − 1�2 tr A tr B tr C tr D +
��

6T

���K − 1��4 tr A tr B tr C tr D + tr�AC�tr�BD�� − tr A tr C tr�BD� − tr�AC�tr B tr D� . �33�
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Using Eq. �33� in place of Eq. �18�, we evaluate ��gs�2 as
above, which simply multiplies Eq. �19� by ��

6T . Also, �g is
unaffected by temperature, so Eq. �21� is also multiplied by
�� /6T.

When dephasing and temperature are both included, the
level broadening has a component due to dephasing
�effectively due to escape into the dephasing lead� so
��=��K /2+N� /2�.46 Equation �28� is then multiplied by
�� /6T, and Eq. �29� is unchanged.

If the temperature is small but the source-drain bias Vsd is
large compared to ��, then we can repeat this calculation
with

win��� = ����� − ��� − Vsd��
1

2NVsd
�1N

0M
� , �34�

where � is the unit step function. Using the equivalent of Eq.
�33�, this multiplies Eqs. �19�, �21�, and �28� by �� /Vsd.

VI. DISCUSSION

This spin polarization should be able to be produced and
detected experimentally. Even quantum dots in n-type GaAs/
AlGaAs heterostructures have been observed to have suffi-
ciently strong spin-orbit coupling to approach the RMT sym-
plectic limit.36,37 If the spin-orbit coupling is not strong
enough for the S matrices of the dot to be drawn from the
CSE, the spin polarization predicted here will be reduced but
should still be present. In a given material with fixed spin-
orbit coupling strength, a sufficiently large quantum dot will
be well described by the CSE, with a possible increase in
dephasing rate as the dot size increases. Section V shows that
the rms spin polarization goes down as ���� /Vsd�
� �AVsd�−1/2, so as the dot is made larger to enter the strong
spin-orbit limit, the bias range where the results are observ-
able decreases. Thus, the effects predicted in this paper are
most likely to be observable in a material with inherently
strong spin-orbit coupling, such as p-type III/V heterostruc-
tures.

If a measurement technique or application is only sensi-
tive to spin polarization along a particular axis, then the rms
predictions for the � component of the polarization and spin
conductance are only �3 times smaller than the results stated
above, since ��g�

s �2= ��gs�2 /3 and �p�
2 = �p2 /3.

We have shown that quantum dots with spin-orbit cou-
pling can generate spin-polarized currents without magnetic
fields or ferromagnets, except in the case of only one outgo-
ing channel, when such a device can only produce a spin
current if dephasing is present. These mesoscopic fluctua-
tions can be large enough to give appreciable spin currents in
devices with a small number of propagating channels. Even
if the spin-orbit coupling is weak, a sufficiently large device
will show these effects. Dephasing generally decreases the
spin polarization, except in the case of one outgoing channel,
where spin polarization cannot be produced in the absence of
dephasing.
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APPENDIX A: QUATERNIONS

A quaternion q is a 2�2 matrix of complex numbers,

q = q�0�12 + i�
�=1

3

q�����, �A1�

where �� are the Pauli matrices and q����C. We define three
conjugates of q,

complex conjugate: q� = q�0��12 + i � q������,

quaternion dual: qR = q�0�12 − i � q�����,

Hermitian conjugate: q† = qR�.

If the 2�2 matrix

�a b

c d
�

is expressed as a quaternion q, then in the 2�2 notation for
the quaternion,

q� = � d� − c�

− b� a� � ,

qR = � d − b

− c a
� ,

q† = �a� c�

b� d� � . �A2�

It is clear that q† corresponds to the usual definition of Her-
mitian conjugation, but complex conjugation is not equiva-
lent.

For a K�K matrix of quaternions Q we similarly define

�Q��ij = Qij
� ,

�QR�ij = Qji
R ,

�Q†� = �Q��R, �A3�

where again Hermitian conjugation of a K�K quaternion
matrix corresponds to the usual Hermitian conjugation of the
equivalent 2K�2K complex matrix, but complex conjuga-
tion is not equivalent. By convention, the trace of the quater-
nion matrix Q is
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tr Q = �i
Qii

�0�, �A4�

which accords with the usual definition of the trace of the
equivalent complex matrix �since the Pauli matrices have
zero trace�, except that the quaternion trace is a factor of 2
smaller.

APPENDIX B: SPIN-POLARIZATION FORBIDDEN WITH
M=N�=1

Consider a quantum dot with N input channels, one output
channel, and one spin-conserving dephasing channel. We
show here that if we send an unpolarized incoherent current
in the N channels and measure the spin polarization in the
output channel, then as long as TRS is unbroken, there can
be no spin polarization in the measured channel, independent
of the transparency of the contacts.

From Eq. �23�, we have win=w0
in+w�

in where

w�
in = P��� tr���P�Sw0

inS†��N���� − ����−1, �B1�

and g�
s =2 tr���PKwout�=2�wKK

out����, where PK is the projec-
tion onto the Kth channel �the output channel� and �q���� is
the � component of the quaternion q.

The outgoing density matrix is wout=w0
out+w�

out, where
w0

out=Sw0
inS† and w�

out=Sw�
inS†. For convenience of notation,

the outgoing channel has index K and the dephasing lead
channel has index 1, so P�= P1. Now

w0
in =

1

2N
�1 − PK − P1� , �B2�

so

�w0
out�KK =

1

2N
�1 − SKKSKK

� − SK1S1K
� � . �B3�

As in Sec. II, the first two terms are real, but the third term
can have a quaternion component. We show that SK1S1K

� is
exactly canceled by �w�

out�KK in the final result for wout. We
have

tr���P1Sw0
inS†� = � ��

2N
�1 − S1KSK1

� − S11S11
� ���0�

�B4�

and

��� = tr���P1S��P1S†� = ���S11S11
� , �B5�

where the last equality follows because S11 commutes with
��, since S11�C. Together, these give

w�
in = P1��

� ��

2N
�1 − S1KSK1

� − S11S11
� ���0�

1 − S11S11
� , �B6�

with implied summation over �. For q a quaternion,
�����q��0�=q, so

w�
in =

P1

2N
�1 −

S1KSK1
�

1 − S11S11
� � . �B7�

Then

w� KK
out =

1

2N
�SK1S1K

� −
SK1S1KSK1

� S1K
�

1 − S11S11
� � . �B8�

The first term in Eq. �B8� cancels SK1S1K
� in Eq. �B3�. The

second term is real, since S=SR, so SK1S1K=SK1SK1
R �C.

Thus, wKK
out is real and gs�=0. Since this result relies only on

the unitarity and self-duality of the S matrix, it is true inde-
pendent of the transparency of the dephasing contact. Note,

however, that if N��1, then gs� can be nonzero in this theory,
even when M =1.

APPENDIX C: SPIN POLARIZATION FROM DEPHASING

Here we give explicit examples of dephasing-induced
spin polarization in the case M =N=1 for both the spin-
conserving and spin-relaxing dephasing leads. The key to the
operation of the dephasing leads is that they break coherence
between different spin states. The spin-relaxing dephasing
lead breaks the coherence between the different spins within
a single channel and can thus produce a spin conductance
with N�=1. The spin-conserving dephasing lead does not
break coherence between modes within a single channel and
thus requires N�=2 to produce a spin polarization.

In the case of a spin-relaxing dephasing lead, consider an
example of an S matrix in the complex representation with
M =N=N�=1,

S =	
0 0 0 0 � − �

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 � �

0 � � 0 0 0

0 � − � 0 0 0


 , �C1�

where �=1 /�2. An up-spin incident from the left exits as an
up spin to the right. A down-spin incident from the left enters
the dephasing lead as an x-polarized spin. It is reinjected as a
dephased equal combination of up- and down-polarized
spins, which then exit 50% as up spins to the left and 50% as

down spins to the right. This results in g=3 /4, gs�= ẑ /4, and
p� = ẑ /3.

We can obtain this result formally, applying Eq. �27� to
find w�

in= P� /4. Note that we divided it by 2 because we are
using the complex rather than quaternion representation. Ap-

plying Eq. �4�, gs�= ẑ /4. Note that if the dephasing lead had
preserved the spin of its absorbed current, it would have
reinjected x-polarized spins, which would have all exited as

spin down to the right, giving g=1 and gs�=0, as Appendix B
proves must happen.
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For the spin-conserving dephasing lead, consider a quan-
tum dot with M =1=N and N�=2 with complex S matrix,

S =	
0 0 0 0 0 − � 0 �

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 � 0 �

0 � � 0 0 0 0 0

0 0 0 0 0 0 − 1 0

0 − � � 0 0 0 0 0

0 0 0 0 1 0 0 0


 . �C2�

Again, an up-spin incident from the left exits as an up
spin to the right. A down-spin incident from the left
enters the dephasing lead as a superposition of spin
up in mode 1 and mode 2. This spin is conserved
but the phase between the modes is broken. After
reinjection, the current reflects back into the dephasing
lead, this time as a superposition of spin down in both
modes. Again the spin is conserved but dephased, and it
exits as equal parts spin up to the left and spin down to the

right, which again gives g=3 /4, gs�= ẑ /4, and p� = ẑ /3.
Using Eq. �23�, w�

in= P� /4, just as in the previous
example.
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