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Nonradiative lifetimes in intermediate band photovoltaics—Absence
of lifetime recovery
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Intermediate band photovoltaics hold the promise of being highly efficient and cost effective
photovoltaic cells. Intermediate states in the band gap, however, are known to facilitate
nonradiative recombination. Much effort has been dedicated to producing metallic intermediate
bands in hopes of producing lifetime recovery—an increase in carrier lifetime as doping levels
increase. We show that lifetime recovery induced by the insulator-to-metal transition will not
occur, because the metallic extended states will be localized by phonons during the recombination
process. Only trivial forms of lifetime recovery, e.g., from an overall shift in intermediate levels,
are possible. Future work in intermediate band photovoltaics must focus on optimizing subgap
optical absorption and minimizing recombination, but not via lifetime recovery. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4732085]

The development of novel highly efficient photovoltaic
(PV) devices has the potential to significantly address the
global energy and carbon problems. The vast majority of
commercial solar cells are made from single-junction semi-
conductors, an architecture which Shockley and Queisser
showed has an absolute efficiency limit of 41% (with con-
centrated sunlight).1 Among the proposals to break this limit
is the intermediate band (IB) photovoltaic, which has the
considerably higher efficiency limit of 63%.2–4

The most important issue in choosing a material for a
standard single-junction semiconductor PV is a tradeoff
between current and voltage; these compete because it can
absorb only photons with energy greater than the band gap
Eg, and the supplied voltage can be no larger than Eg=e,
where !e is the electron charge. An IBPV device, illustrated
in Fig. 1, has an extra set of levels inside the semiconductor
band gap; two subgap photons can be absorbed by the IB
layer, producing a single electron-hole pair. Electrical con-
tact is made only to the standard n- and p-type layers, so the
IB layer produces extra current while allowing the full band
gap to set the limit on the voltage, giving the considerably
elevated efficiency bound of 63%.2 The IBPV effect has
been demonstrated5–7 and proposed8,9 in a number of sys-
tems, though it has not yet produced high efficiency cells.

One method for making a material with an IB is to dope
a semiconductor with large concentrations of impurities that
form donor (or acceptor) levels deep inside the band gap.
There is an obvious problem with this recipe: levels deep in
the band gap are well known to cause nonradiative recombi-
nation,10,11 which threatens to remove any advantage from
the increased absorption. It was proposed that a sufficiently
high concentration of dopants could cause an insulator to
metal transition (IMT) in the IB, which would suppress the
nonradiative recombination rate and cause lifetime recovery
in which adding additional dopants decreases the nonradia-
tive recombination rate.12 A great deal of work has gone into
looking for such an IMT in doped semiconductors,13–19,52

including an experimental report of lifetime recovery.20

A single defect-mediated recombination event consists of
two trapping events: a conduction band (CB) electron is
trapped by an unoccupied defect state and a valence band
(VB) hole is trapped by an occupied defect state. The statisti-
cal mechanics of the occupancy of the trap levels—showing
that midgap states are best at fostering nonradiative recombi-
nation—was worked out by Shockley and Read10 and Hall11

and is called SRH recombination. The theoretical claim of
lifetime recovery arose from a study of multiphonon recombi-
nation, the theory of which is well developed for isolated
impurities.21–24 When applied to polar semiconductors, that
theory implies that the trapping rates decrease as the size of
the defect wavefunction increases.24,25 Since metallic systems
have delocalized states, this result was taken to imply that
midgap metallic states would not induce recombination.12

Here, we extend the multiphonon recombination theory
to the case of many impurities. We show that many-impurity

FIG. 1. An IB device has an IB layer between standard p- and n-type semi-
conductor layers. The IB layer absorbs subgap photons, which pass through
the p-type (or n-type) host layer, increasing current generation. At bottom,
band levels under illumination are shown, indicating the voltage V and the
three separate quasi-Fermi levels le, lh, and li for the CB electrons, VB
holes, and IB states, respectively. If trapping rates are low, voltage produc-
tion is still determined by the n- and p-type band gaps.
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delocalized states actually increase trapping rates compared
to an equivalent localized system. We show that as long as
the shift of IB energies due to interactions in the IB is less
than the dopant ionization energy DE0, the trapping rates can-
not be significantly reduced from the independent-dopant
limit, regardless of whether the IB eigenstates are extended
or localized. Trivial forms of lifetime recovery are still possi-
ble. For example, if the dopant chemical state changes with
doping (e.g., if precipitates form), the recombination rate
may drop with increased doping. Another trivial effect
occurs if the interaction between defects moves the IB away
from mid-gap, but this is not a useful route to IBPV, as the
optical absorption frequencies will change accordingly.

Despite this negative prediction about true lifetime recov-
ery, IBPV still has potential to produce highly efficient solar
cells if materials can be found which have sufficiently strong
absorptivity for subgap photons, as we discuss in the last sec-
tion of this paper. Efforts should be directed toward finding
semiconductor:dopant systems which have intrinsically long
trapping times and in which the subgap absorptivities are
high, not toward finding insulator-to-metal transitions in
doped semiconductors.

We begin with an outline of the standard theory of multi-
phonon recombination for isolated dopants. We show how to
extend this model to dopant concentrations where the inter-
mediate band has a finite bandwidth, giving an intuition for
why an IMT will not suppress trapping. We give a variational
argument that such IB’s will always increase the trapping
rate, except for trivial effects. We then give a perturbative
treatment, allowing bounds on the trapping rates from readily
measured material properties. We conclude with a discussion
of material requirements for functioning IBPV. Full details of
the model and proofs are in the Appendix, as are discussions
of interaction effects in a partially filled IB, applications to
highly mismatched alloys (HMA), and the low-temperature
(tunneling) limit of multiphonon trapping.

I. TRAPPING RATE

We consider a CB electron (equivalently a valence band
hole, but we will consider an electron for specificity) cap-
tured by an unoccupied defect state. The argument for life-
time recovery focuses on multiphonon recombination, and
we will consider that mechanism here. For neutral defects
and deep defect levels, the multiphonon trapping mechanism
is believed to be most important; in other cases cascade cap-
ture26 or other mechanisms27 can be important.

The basics of multiphonon recombination for isolated
defects are illustrated in Fig. 2. We consider a simplified sys-
tem with a single (initially occupied) conduction band state,
a single impurity state, and one electron. We work in the
Born-Oppenheimer approximation, and the motion of the lat-
tice is treated classically (tunneling is considered in the Ap-
pendix). Vibrations of the lattice can be decomposed into
normal modes, phonons, each with a frequency xi and a
coordinate Qi. As the lattice moves, the energy of the system
changes due to two effects: the quadratic energy cost of dis-

torting these phonon modes, Eph ¼
P

i x
2
i Q

2
i =2, and a linear

electron-phonon coupling, which depends on the electronic

state of the system. We take ~Q ¼ 0 to be the equilibrium
configuration with the electron in the CB state.

Figure 2 shows the energy of the two electronic states as
a function of lattice distortion in one of the system’s normal
modes. The CB edge and unoccupied defect state have ener-
gies eC and e00, respectively. If the localized impurity state is
occupied, the nearby ions are drawn toward the impurity,
shifting their equilibrium position, and reducing the energy
of the occupied state to e0, illustrated in the bottom curve.
The relaxation energy k ¼ e00 ! e0 is shown in the figure.
With electron-phonon coupling linear in the phonon coordi-
nates Qi, the curvature of the parabola is the same in both
electronic states.

When the lattice is in configuration Qc, the conduction
and impurity states are degenerate, which allows rapid
transfer between them, i.e., trapping. The activation energy Ea

¼ x2Q2
c=2 shows how much energy is required to bring the

CB state up to that degeneracy point. Simple algebra gives

Ea ¼
ðDE0Þ2

4k
¼ ðDE! kÞ2

4k
: (1)

In the high temperature limit, the resulting trapping rate is an
activated process, with rate

c ¼ jVð~QcÞj
2

!h

p
kBTk

! "1=2

exp ! Ea

kBT

! "
; (2)

where T is the temperature, kB is Boltzmann’s constant, !h is
Planck’s constant, and the Vð~QcÞ gives the phonon-induced
coupling between the CB and impurity states, discussed fur-
ther in the Appendix.24 This is the same result as in Marcus
theory, in whose terminology the IB trapping problem is gen-
erally in the inverted regime.28

In the case of polar electron-phonon coupling, k / 1=a%B,
where a%B is the effective Bohr radius of the hydrogenlike im-
purity wavefunction.25,29,30 As the defect state spreads out, k

FIG. 2. For a system with one electron and one impurity, the configuration
coordinate diagram at left shows energy levels as a function of lattice distor-
tion Q with the electron in the CB (upper) and with the electron in the impu-
rity state (lower). The equilibrium lattice coordinate is shifted to dQ when
the localized impurity state is occupied, giving the relaxation energy k and
causing the parabolas to cross. The activation energy Ea shows the energy
required to bring the CB electron to the degeneracy point, from which trap-
ping occurs most rapidly. At right, the same state energies are displayed
without the phonon energy Eph, clearly showing the linear electron-phonon
coupling. The two states are degenerate when the electron phonon coupling
equals DE0.
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decreases, increasing Ea and suppressing c. Similar effects
are found for deformation-potential coupling in confined sys-
tems.31,32 Since the argument for lifetime recovery relies on
this relationship, we will assume that it applies.

Equation (1) is also true when all the phonon modes are
considered. In this case,

Ea ¼
1

2

X

i

x2
i Q

2
c;i; (3)

where ~Qc is the lattice coordinate such that EC ¼ EI and Ea

is minimized.

A. Intermediate band

For large impurity concentration Nt, the impurity states
can undergo an IMT, with an associated delocalization of the
electron density in at least some of the IB eigenstates. Since
k decreases with impurity wavefunction size, Luque et al.
suggested that the IMT would suppress the trapping rates
and thus the overall recombination rate.12 We show that the
extrapolation from the isolated-impurity problem to the
many-impurity problem is more complicated. Even when the
IB has extended eigenstates, lattice distortions localize elec-
tronic states sufficiently to cause multiphonon recombina-
tion. The delocalized states in fact can only increase the
trapping rate.

The key idea for generalizing the isolated-impurity
result is that trapping occurs through the lattice configuration
~Q such that

1. A CB and an IB state are degenerate, and

2. The activation energy Ea ¼
X

i

1

2
x2

i Q
2
i is minimized.

Our goal is then to find the smallest Ea such that an IB
state crosses the CB edge, which gives c.

The band edges of the IB should be relatively easy to
determine optically, so we consider the energies e1 and e2 of
the highest and lowest energy states in the IB to be known.
As shown in Fig. 2, e00 is the energy of the empty defect state
in the dilute limit. Let D ¼ maxfje1 ! e00j; je2 ! e00jg be the
largest energy shift of an IB energy due to the many-
impurity physics. Then D=DE0 will be our perturbation pa-
rameter, assumed to be small.

Our intuitive argument is that the lattice distortions
required for multiphonon recombination necessarily localize
the IB states. We know from the isolated-dopant case that a
lattice distortion ~Qc produces sufficient electron-phonon
coupling to raise the energy of an unoccupied defect state by
DE0. Since the IB has a bandwidth no bigger than D, in IBPV
systems (where DE0 & D) the electron-phonon coupling in
lattice position ~Qc is much larger than whatever interactions
in the IB cause delocalization. Regardless of whether the IB
states are delocalized when ~Q ¼ 0, when the lattice is at ~Qc,
the isolated-impurity wavefunction will be an approximate
eigenstate of the system and thus allow multiphonon recom-
bination, as illustrated in Figure 3. That is, the thermal (or
tunneling) motion of the lattice responsible for the standard
isolated-defect multiphonon trapping process also localizes
many-dopant IB states.

Only when D is of similar order to DE0 is it possible for
the IB to have extended states that are still extended when
~Q ¼ ~Qc. In order to realize the Luque et al. proposal for life-
time recovery,12 the IB must approach this large-bandwidth
limit, having extended states and sufficient bandwidth to
resist their localization. However, when D approaches DE0,
the IB crosses with the CB, and the material is no longer use-
ful for IBPV. Note that both the CB and VB have band-
widths much greater than Eg, so their states are not easily
localized, and there is no fast band-to-band multiphonon
recombination process, as is well known.

Trivial forms of lifetime recovery may occur. Both SRH
statistics and the dependence of c (Eq. (2)) on ionization
energy DE0 produce the result that recombination is fastest
through states at the center of the band gap, since recombina-
tion is limited by the slowest trapping process. We are
assuming that both CB and VB trapping processes are domi-
nated by direct multi-phonon processes and not cascade trap-
ping. Thus, a perturbation that moves IB energy levels
uniformly away from the center of the band will decrease the
recombination rate. This trivial form of lifetime recovery is

FIG. 3. Cartoon of a crystal of gray spherical atoms with blue diamond
impurities showing the physical origin of phonon-induced localization. (a)
With the intermediate band unoccupied and the atoms in their ground state
positions, an eigenstate in the IB (light green) may be extended across the
impurity sites. Its energy is indicated by the green line in the density of
states (DOS), at right, which shows the conduction band and the intermedi-
ate band. (b) When a thermal fluctuation moves the atoms surrounding an
impurity away from their equilibrium positions, an eigenstate becomes
localized at that impurity; its energy is shown by the green line in the DOS.
This occurs because for sufficiently large deviations of the host atoms, the
electron-phonon coupling energy is larger than the IB bandwidth, so the
eigenstates of the electron-phonon coupling become approximate eigenstates
of the IB. When the energy of this localized state equals that of the CB, rapid
trapping occurs.
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possible, but a suppression of recombination due to delocali-
zation arising from an insulator-to-metal transition is not.

B. Variational argument

We now present a variational argument that delocaliza-
tion in an IB always increases the trapping rate. We consider
a system with N identical defects producing midgap states.
As detailed in the Appendix, we take the basis of independent
states localized on each impurity, fwag with a ¼ 0…N ! 1.
These states are the eigenstates in the absence of impurity-
impurity interactions. Interactions are given by the Hamilto-
nian term h, which couples the fwag to each other. The Ham-
iltonian is written out formally in Eq. (A1), in the Appendix.
Let ~Hð~QÞ be the Hamiltonian containing only h and the
electron-phonon coupling; let E0ð~QÞ be the highest eigen-
value of ~Hð~QÞ. Trapping occurs at the ~Q such that E0ð~QÞ
¼ DE0 and Ea is minimized.

We consider an IB in which the bandwidth is less than
DE0, so the IB does not overlap with the CB when ~Q ¼ 0.
With h ¼ 0, let ~Q0 be the phonon coordinate such that
Eh¼0
0 ð~Q0Þ ¼ DE0 and the activation energy, Eh¼0

a , is mini-
mal.33 Let jw0i be the associated eigenstate; jw0i is localized
since h ¼ 0 and trapping is fastest through localized states.
We now allow h to be nonzero and assume that hw0jhjw0i
¼ 0, to eliminate the trivial change of trapping rates due to
shifts in the localized states’ energies. By the variational prin-

ciple, E0ð~Q0Þ ' DE0, since hw0j ~H jw0i ¼ DE0. We assume

that E0ð~QÞ is a smooth function of ~Q. Then since by assump-

tion E0ð~Q ¼ 0Þ < DE0, there is a j ( 1 such that E0ðj~Q0Þ
¼ DE0. The activation energy for this state is Ea ¼ j2Eh¼0

a .
Thus, the trapping rate is greater than or equal to the trapping
rate without h at all.

C. Perturbative argument

The variational result is non-constructive. To understand
its physical origin, we perform a perturbative calculation in
h to find Ea as delocalizing effects are included. This also
allows us to make a prediction for trapping rate changes,
including the trivial effect. To second order in D, the activa-
tion energy is

Ea ¼ E0
a 1! h00

DE0

! "2

! 2

DE0

X

a>0

jha0j2

E0 ! Ea

" #

: (4)

Details of the derivation are in the Appendix. We use the
notation hab ) hwajhjwbi, and Ea are the electron-phonon
energies of the states wa when ~Q ¼ ~Q0 and h ¼ 0. As in the
variational argument, E0 is the highest eigenvalue of the
electron-phonon coupling, chosen so E0 ¼ DE0.

The second order correction to Ea (the second term in
Eq. (4)) is always negative, since E0 > Ea for all a > 0, thus
increasing c. These are the terms resulting from the off-
diagonal components of h, which can cause delocalization
and which the variational argument showed always increase
the trapping rate. The first order correction is the trivial
change, which takes the activation energy for the localized
states, Eq. (1), and shifts the energy gap DE0 by h00.

We can use this result to find an upper bound on Ea (and
associated lower bound on c), which is valid through second
order. We consider h00 to be unknown, though it could be
easily determined within a model for the IB. For example, a
standard tight-binding model for the IB would have h00 ¼ 0.
Since we consider the IB band edges e1 and e2 to be experi-
mentally determinable, we know h00 ' e2 ! e00. Then we can
bound, to second order,

Ea (
ðeC ! e2Þ2

4k0
; (5)

where eC is the CB edge, shown in Fig. 2.
If there are N defects (equivalently, N distinct IB states),

then each one has an associated ~Qc, whose influence on trap-
ping we can estimate in this same way. Then Eqs. (2) and (5)
give a lower bound on the overall trapping rate for CB elec-
trons that scales with N, just as for independent defects.

II. PROSPECTS FOR IBPV

Though nontrivial lifetime recovery in an IB system appears
impossible, there is still good reason to think that IB devices
can improve PV efficiencies. Consider an IBPV device as
illustrated in Fig. 1. The high-energy photons will be absorbed
by the p-type region before reaching the IB layer. Let a be the
mean absorptivity of the IB region over the subgap portion of
the spectrum. The IB layer width w must be sufficiently wide
to absorb a large fraction of subgap photons, so it is desirable
to choose w ¼ c=a for c * 2! 3. For the IBPV device to out-
perform the single-junction device with no IB, the IB region
must add more current by absorption of subgap photons than
it subtracts by enhanced nonradiative recombination, in addi-
tion to not significantly changing the voltage.

Let t be the transit time for a CB electron to move from
the p-type to n-type side of the device and let s be the nonra-
diative lifetime of CB electrons in the IB region. For the
IBPV device to have higher efficiency than the single-
junction device and approach the radiative limiting efficiency,
it must have ! ) s=t & 1. If we assume that the built-in volt-
age Vbi is dropped mostly across the thin IB region, then

t ¼ w2

lVbi
; (6)

where l is the electron mobility in the IB region. Alterna-
tively, we could consider the time to diffuse across the IB
region, also with t / w2. Thus, for an IB region just thick
enough to absorb the subgap light,34

! ¼ 1

c2
Vbila2s: (7)

We roughly expect s / 1=Nt and a / Nt in the IB region.
The mobility also declines as N!b

t , but generally with a small
exponent b.35,36 Thus, we have reason to believe that high
dopant concentrations and strong subgap absorptivities37–40

can produce useful IBPV devices. Full analysis balancing
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recombination and current generation as in Refs. 41–44 is
required to evaluate particular systems.

Future research efforts should focus on producing highly
absorptive, thin layers of IB materials made of dopants
which have small contributions to nonradiative recombina-
tion, not on lifetime recovery. Non-dopant-based IBPV pro-
posals, including highly mismatched alloys5 and crystalline
systems45 may have inherently small trapping rates, so are
also promising.
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APPENDIX: DETAILS OF MODEL, CALCULATIONS,
AND APPLICABILITY

1. Model

As mentioned in the main text, we work in the Born-
Oppenheimer approximation, in which the lattice is consid-
ered static for the electronic system, so we neglect the phonon
momentum; each phonon coordinate Qi has an associated
angular frequency xi, and there are N impurities. We con-
sider a situation in which there is initially one electron in the
CB in a state j/ci, and all IB states are empty. This situation
permits a single-electron picture with N localized orthogonal-
ized impurity wavefunctions jwai for a ¼ 1…N. We discuss
effects of partial filling of the IB at the end of this Appendix.
In this approximation, we ignore scattering by CB states into
each other, which is valid in the usual case that the CB band-
width is large compared to the electron-phonon coupling.
Assuming linear coupling between the electron and phonon
degrees of freedom, the Hamiltonian can be written as H ¼ Hel

þEph þ Hel!ph with

Hel ¼ eCj/cih/cjþ e00
X

a

jwaihwajþ
X

ab

habjwaihwbj

Eph ¼
X

i

1

2
x2

i Q
2
i

Hel!ph ¼
X

i

Qi

hX

ab

Ai
abjwaihwbj

þ
X

a

Bi
aðjwaih/cjþ j/cihwajÞ

i
; (A1)

where eC is the energy of the conduction band edge, e00 is the
energy of the empty isolated-impurity state, the IB Hamilto-
nian h is zero in the dilute-impurity limit, Ai is responsible
for the shift in the equilibrium phonon coordinate when an
impurity state is occupied, and Bi causes the transition
between the conduction and impurity states. In what follows,
we will neglect Bi in describing state energies, as it is impor-
tant only when IB and CB states are nearly degenerate. The
phonon mass has been incorporated into the phonon coordi-
nates (lattice displacements) Qi. The phonon modes include

all standard crystalline extended modes in addition to any
local vibrational modes around the impurities.

2. Trapping rates

a. Isolated defects

We first re-express the standard results by considering
the case of only one impurity, N ¼ 1, so h ¼ 0. If the elec-
tron is in the CB level, then the energy of the system is

ECð~QÞ ¼ eC þ
P

i x
2
i Q

2
i =2. If the electron is in the impurity

level, then the energy is

EIð~QÞ ¼ e00 þ
X

i

1

2
x2

i ðQi þ Ai=x2
i Þ

2 ! Ai2=2x2
i :

We see that the equilibrium phonon position is dQi ¼ !Ai=
x2

i . We define the relaxation energy k )
X

Ai2=2x2
i . When

the impurity state is filled, its relaxed energy is e0 ¼ e00 ! k,
as shown in Fig. 2. We also define DE0 ¼ eC ! e00 and
DE ¼ eC ! e0, where primes indicate empty IB levels. It is
customary to define the dimensionless Huang-Rhys factor
for each phonon mode as

Si ) xidQ2
i =2!h ¼ Ai2=2!hx3

i ; (A2)

where !h is Planck’s constant. The total Huang-Rhys factor is
S ¼

P
i Si. Then k ¼ !h

P
i Sixi.

The energies EC and EI are equal when the phonon coor-
dinate is such that ~Q , ~A ¼ DE0. The activation energy to reach

this configuration is Ea ¼
P

i x
2
i Q

2
i =2. The phonon coordinate

~Q satisfying ECð~QÞ ¼ EIð~QÞ and minimizing Ea is denoted
~Qc. A simple application of Lagrange multipliers shows that

Qc;i ¼
Ai

x2
i

DE0

2k
; (A3)

which gives

Ea ¼
1

2

X

i

x2
i Q

2
c;i ¼

ðDE0Þ2

4k
¼ ðDE! kÞ2

4k
; (A4)

as in Eq. (1).
In the high-temperature activated regime, where kBT

& !hx=2, the multiphonon trapping process occurs primarily
through ~Q ¼ ~Qc,

21,24 giving Eq. (2), where the off-diagonal
matrix element Vð~QcÞ ¼ ~Qc , ~B.24,46 The case of the low
temperature tunneling regime will be discussed at the end of
this Appendix.

b. Perturbative calculation with IB

We now consider dopants forming an IB. We develop
this argument formally using Eq. (A1) in the case with N im-
purity levels. The Ai are now matrices that couple IB states.
In the basis of localized IB states, the Ai

ab should be local
matrices, either diagonal or with small off-diagonal compo-
nents, as the phonons mainly act to raise and lower the
energy of occupying a given localized state; off-diagonal
terms in this basis encourage delocalization, which is not
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expected for phonons. The calculation below is simplest if
we assume that the Ai are all diagonal in the localized basis
(or otherwise that they all commute), but we will keep their
off-diagonal components and formally treat them as small.

First consider h ¼ 0. As in the variational argument,
there is a vector ~Q0 such that the largest eigenvalue of

H0 ¼ ~Q0 , ~A (A5)

is DE0 and
P

i x
2
i Q

2
0;i is minimal (also see Ref. 33). Choose

the basis fwag for a ¼ 0…N ! 1 to be the eigenstates of H0,
with eigenvalues fEag with E0 ¼ DE0. Using the constraint

DE0 ¼ hw0jH0jw0i, we find ~Q0 using a Lagrange multiplier,
minimizing

f ¼ 1

2

X

i

x2
i Q

2
0;i þ lðDE0 ! ~Q0 , ~A00Þ; (A6)

where we use the notation Aab ) hwajAjwbi, giving

Q0;i ¼
DE0

2k0

Ai
00

x2
i

; (A7)

and we define the isolated impurity relaxation energy

k0 ¼
X

i

ðAi
00Þ

2

2x2
i

: (A8)

Together, these give the activation energy

E0
a ¼

1

2

X

i

x2
i Q

2
0;i ¼

ðDE0Þ2

4k0
; (A9)

just as in Eq. (1).
When we include h, we want to find a vector ~Q such

that the highest eigenvalue of the Hamiltonian

~Hð~QÞ ¼ hþ ~Q , ~A (A10)

is equal to DE0, and Ea is minimal. Let the highest eigen-
value of ~Hð~QÞ be ~E0ð~QÞ.

When we include h, we must also consider a shift in the
phonon vector,

~Q ¼ ~Q0 þ D~Q: (A11)

We consider the perturbation Hamiltonian

H1 ¼ hþ D~Q , ~A; (A12)

and we seek the self-consistent solution D~Q such that the
highest eigenvalue of ~H ¼ H0 þ H1 is DE0 and

P
i x

2
i Q

2
i =2

is minimal.
We consider second-order perturbation theory. Near

the configuration ~Q0, the electron-phonon coupling most
strongly perturbs a single localized state, so we can assume
that no Ea>0 is close to degenerate with E0. When H1 is
added, the highest eigenvalue is

~E0 ¼ E0 þ hw0jH1jw0iþ
X

a>0

jhwajH1jw0ij
2

E0 ! Ea
þ third order:

(A13)

We impose the constraint that ~E0 ¼ E0 ¼ DE0 by minimizing
the function

f ¼
X

i

1

2
x2

i ðQ0;i þ DQiÞ2 þ lð ~E0 ! E0Þ: (A14)

@f

@DQi
¼ 0 ¼ x2

i ðQ0;i þ DQiÞ

þ l Ai
00 þ 2

X

a>0

ha0 þ D~Q , ~Aa0

E0 ! Ea
Ai
a0

" #

; (A15)

where we have assumed that all the wavefunctions and oper-
ators are real.

If the matrices Ai all commute, then Ai
a0 / da0. We

instead assume that the Ai
a0 are small for a > 0 and consider

h and
P

a>0
~Qc , ~Aa0 to be of the same order. Then the term

D~Q , ~Aa0Ai
a0 in Eq. (A15) is third order and can be neglected.

Note that since the jwai are eigenstates of ~Q0 , ~A,

~Q0 , ~Aa0 ¼ da0DE0: (A16)

Using this result and Eq. (A7),

X

i

Ai
a0
Ai
00

x2
i

¼
X

i

Ai
a0Q0;i

2k0
DE0 ¼ 2k0da0: (A17)

Then we find

l ¼
!DE0 þ h00 þ

X

a>0

jha0j2

E0 ! Ea

2k0
and

DQi ¼ ! h00 þ
X

a>0

jha0j2

E0 ! Ea

 !
Q0;i

DE0 !
DE0

k0x2
i

X

a>0

ha0Ai
a0

E0 ! Ea
:

(A18)

Note that the first term of D~Q is parallel to ~Q0. The last term
of D~Q shifts the direction of the phonon coordinates and is
second order (or zero if the Ai commute).

We use this result and Eq. (A7) to find the new activa-
tion energy, Eq. (4), which is obtained by keeping terms to
second order and again using Eq. (A16). Note that the shift
in the direction of the lattice distortion has no effect on Ea, at
least to second order.

3. Valence band trapping

A similar estimate can be made for the IB to VB trap-
ping process: trapping occurs through the phonon coordinate
~Qv such that the lowest energy filled IB state is degenerate
with a VB state. The relevant Hamiltonian is the same as in
Eq. (A1), with the addition of a term eV j/vih/vj, with j/vi a
VB state, where eV ¼ eC ! Eg. We define the energy gap
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between the filled impurity state and the VB to be DEv

¼ e0 ! eV . Then the activation energy to first order is

Ea;v ¼
ðDEv ! k0 ! h00Þ2

4k0
: (A19)

Note that the unperturbed phonon coordinate, as in Eq. (A7),
is

~Q0;v ¼ !DE0
v

2k0

~A00

x2
i

¼ !DE0
v

DE0
~Q0; (A20)

where DE0
v ¼ DEv þ k0. We see that ~Q0;v is a displacement

of the opposite sign from ~Q0 but in the same direction.
Note that if h00 is close to e2, as in Eq. (5), the CB trap-

ping rate is slowed, but the VB trapping rate is increased,
and vice versa if h00 is close to e1. The overall recombination
rate will be minimized by slowing whichever of the CB and
VB trapping rates is rate-limiting. For a functioning IB pho-
tovoltaic, both trapping rates must independently be small,
so the material can sustain separate quasi-Fermi levels for
the CB, IB, and VB populations,2 as in Fig. 1.

4. Partially filled IB

We now consider the case of an IB that is not initially
empty. If the IB bandwidth is less than k0, then small-
polaron formation47 will localize the filled IB states, splitting
the IB into a lower-energy, filled band and a higher-energy
empty IB, which should behave as described in this paper. If
the IB bandwidth is significantly greater than k0 and if the IB
begins partially occupied, the effective gap to the CB, DE0,
of Eq. (1) will be increased if the localized state jw0i begins
partially occupied. An energy cost of up to k0 must be paid
to empty the state, which will decrease the trapping rate.

5. Highly mismatched alloys

While we have discussed dopant-produced IB’s, a simi-
lar result holds for HMA, in which the IB is formed by the
repulsion of the CB from resonances above the CB mini-
mum.5,48,49 In this case, recombination can still proceed
through the IB, but there is no isolated impurity state for
comparison. Multiphonon trapping will still occur through
the localized states in the IB, since they are the eigenstates
of the electron-phonon coupling. For any IB, the reorganiza-
tion energy k0 is determined by the smallest wavefunction
that can be made by linear combinations of the states of the
IB.50 In addition to this k0, the HMA IB can still be charac-
terized by a maximum and minimum energy e1 and e2 and
bandwidth J ¼ e1 ! e2. As long as J - eC ! e1, the localized
wavefunctions will become approximate eigenstates of the
IB as the lattice is distorted, and multiphonon trapping
through the localized states will occur, as described above
for the dopant-produced IB. Since the IB in the HMA case
forms from the undoped CB, k0 may be considerably smaller
than in the deep-level-dopant case, giving a small multipho-
non recombination rate; nontrivial lifetime recovery is still
not expected.

6. Low-temperature limit

The high-temperature limit used in Eq. (2) is only appli-
cable for kBT & !hhxi, where hxi is the typical phonon fre-
quency. At low temperatures, the phonon momentum must
be treated correctly, and tunneling is required to realize the
multiphonon trapping process. In the low-temperature tun-
neling regime

c / exp ! DE
!hxM

log
DE
k

! "
! 1

# $% &
; (A21)

where xM is the maximum phonon frequency.51 The effect
of h is effectively to change DE without changing k (see Eq.
(A2)). With a deep IB, DE & k so DE *

ffiffiffiffiffiffiffiffiffiffi
4kEa

p
. In this

case, c still decreases exponentially with
ffiffiffiffiffi
Ea

p
, and the above

analysis of the qualitative effect of delocalized states is still
valid.
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