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We discuss a feedback mechanism between electronic states in a two-electron double quantum dot and the
underlying nuclear spin bath. We analyze two pumping cycles for which this feedback provides a force for the
Overhauser fields of the two dots to either equilibrate or diverge. Which of these effects is favored depends on
the g factor and Overhauser coupling constant of the material. The strength of the effect increases with the ratio
of Overhauser coupling to electron exchange energy and also increases as the external magnetic field
decreases.
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Hyperfine interaction with the host nuclei in nanoscale
GaAs systems, while relatively weak, can nevertheless limit
the electron coherence time and thereby complicate strate-
gies to implement quantum information and quantum com-
puting schemes in these systems.1–4 Conversely, ever-
increasing control of angular-momentum transfer between
electrons and nuclei in a range of materials enables numer-
ous applications precisely because of the environmental iso-
lation of the nuclear system. These include applications to
quantum information processing employing NMR.5 From the
perspective of fundamental physics, experiments on few-
electron systems with controllable coupling to the nuclear
many-body system uncover a fascinating arena of new phe-
nomena with ramifications for theoretical physics and
engineering.6

Experiments on double quantum dots with two electrons
have uncovered an intriguing phenomenon called the “Pauli
blockade”7 in which two electrons with parallel spins are
forbidden from combining in one dot by the exclusion prin-
ciple. Recent transport and gate pulsing experiments2,8,9 have
exploited this condition to promote and study a spin “flip-
flop” process in which angular momentum is exchanged with
the local nuclei. A variety of behaviors of the nuclear state,
as hyperfine flip flops are repeated, has been observed8,9 and
numerically predicted,10,11 with reports that such repeated
flip flops can cause the Overhauser fields of the two dots
either to equalize8 or to diverge.9 In these studies a central
issue concerns under which circumstances the nuclear spin
flops will lead to equilibration of the Overhauser difference
field between the two dots and under which it will lead to its
divergence. Here we describe a force which, depending on
the initial electron state as well as the product of the g factor
g and the Overhauser coupling constant A,12 works to de-
crease or increase this difference field. We assume that gA is
negative, as it is for GaAs. We describe two pulse sequences
which differ in the choice of the initial electron state and
which consequently have a force tending to cause the Over-
hauser fields in the two dots to equilibrate or to diverge.

Electronic States of the Double Dot with N=2. We calcu-
late the electronic states of the two-electron �N=2� double
dot within the Hund-Mulliken formalism13,14 developed for
the hydrogen molecule. We focus on the regime in the charge
stability diagram15 where the charge states �NL ,NR�= �1,1�

and �0,2� are close to degeneracy, with NL, NR the numbers
of electrons on the left, right dots. Typically, in this method,
eigenstates of total spin, singlets and triplets, are employed
as basis states. However, since we wish to study the inhomo-
geneous Overhauser effect due to different effective mag-
netic fields in the two dots, we choose a basis which diago-
nalizes, at the single-particle level, the z component of this
inhomogeneous field and in which the spatial dependence of
nuclear spin flips induced by electronic spin “flops” is trans-
parent. The basis is: ��n����R↑R↓� , �L↑R↓� , �L↓R↑� , �L↑R↑��,
where L and R indicate the orbital states of the left and right
dots and the arrows denote spin direction.16 Two remaining
states of the Hund-Mulliken model, �L↓R↓� and �L↑L↓� are
not relevant to our analysis, the former due to high Zeeman
energy and the latter being far away in the charge stability
diagram. Note that �R↑R↓� is the standard S�0,2� state and
�L↑R↑� is the standard �T+� state. The hyperfine Hamiltonian
for two electrons is properly written as

Hhf =
vA

�2 �
m

M

	��r1 − Rm�S1 · Im � 1 + 1 � ��r2 − Rm�S2 · Im


�1�

where ri and Si are operators in the subspace of electron i
�first quantized representation� and m is summed over a total
of M nuclei �typically M �106�; and where v is the volume
per nucleus. We assume, for simplicity, a single nuclear spe-
cies with spin 1/2. With all nuclei polarized, GaAs has an
Overhauser field of approximately 5.3T.17 Taking this maxi-
mum field as a constraint leads to an average coupling con-
stant A=270 �eV.

The standard Hund-Mulliken Hamiltonian applied to a
double quantum dot includes single-particle energies and
gate voltages 	i.e., “detuning” � �Ref. 15�
 for the two dots,
tunnel coupling �, Zeeman energy EZ�g�BBext, with �B the
Bohr magneton and Bext the external magnetic field, and
Coulomb matrix elements.13 Including now terms from Hhf
we get �upper triangle of Hermitian matrix shown�,
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H =

�R↑R↓� �L↑R↓� �L↓R↑� �L↑R↑�

�
EC − � Iz

LR − Iz
RRL�R� + � Iz

LR − Iz
RRL�R� + � I+

RRL�R� − I+
LR

Iz
LL − Iz

RR Vx I+
RR

Iz
RR − Iz

LL I+
LL

Iz
RR + Iz

LL + EZ

� , �2�

where we have taken the orbital energies of L and R to be
zero for simplicity, and we include only two Coulomb terms:
the charging energy EC�VRRRR−VRLRL and the exchange
matrix element Vx�VLRRL.18 Equation �2� is written to lead-
ing order in the overlap L �R�. Higher order terms
�O��L �R��2�� occur due to the normalization of the basis
states.13 The matrix elements of H in this electronic basis
remain operators in the Hilbert space of the nuclear
coordinates,19

I��	 � v
A

2�
�
m=1

M


�
��Rm�
	�Rm�I�m �3�

where � ,	� �L ,R�. Previous work has generally ignored the
transition term I+

LR, which we see from Eq. �2� can lead to a
direct transition between �R↑R↓� and �L↑R↑� and causes a spin
flip where the two wavefunctions overlap, in this case in the
barrier. While such terms could be experimentally important
for large Bext, i.e., where �R↑R↓� and �L↑R↑� undergo an
avoided crossing deep in the �0,2� regime, we will, in this
Rapid Communication, concentrate on spin-flip-flop pro-
cesses occurring entirely in the left or right dot. We therefore
consider the simpler Hamiltonian with the terms proportional
to the L-R overlap omitted.

Nuclear spin-flip location. The crucial feature of Eq. �2� is
that the �L↑R↑� state is coupled to �L↑R↓� via a term which
flips a nuclear spin in the right dot �I+

RR� and it is coupled to
�L↓R↑� by a term that flips a nuclear spin in the left dot �I+

LL�.
In the absence of flip-flop coupling to the �L↑R↑� state, the
upper left 3�3 matrix in Eq. �2� has an electronic ground
state, which we denote as

��� = a����R↑R↓� + b����L↑R↓� + c����L↓R↑� . �4�

As shown in Fig. 1, at large �positive� �, ���→ �R↑R↓�
�S�0,2� and at large negative �, ��� becomes an
unequal superposition of �L↑R↓� and �L↓R↑�. Even when
Vx �Iz

RR− Iz
LL��, the inhomogeneous Overhauser effect will

produce a preference for either the �L↑R↓� or the �L↓R↑� com-
ponent of �, with the electron down spin preferentially lo-
cated on the dot with smaller Iz.

As noted above, pulsing experiments8,9,15 employ the
avoided crossing between � and �L↑R↑�, which is opened up
by the hyperfine coupling, to transfer units of angular mo-
mentum to the nuclear system. The initial state can be chosen
to be � or �L↑R↑�. This choice, along with the sign of gA,
determines the sign of angular-momentum transfer �see
double arrow in Fig. 1�. The position of the avoided crossing,
�̃, is determined by the energy of �L↑R↑� �see Fig. 1� which is

determined by Bext. Insofar as b��̃��c��̃�, a transition from
� to �L↑R↑� will preferentially induce a nuclear spin flip
down on the side with the larger Iz. This tends to equilibrate
the values of Iz

RR and Iz
LL. Conversely, a transition from

�L↑R↑� to � will preferentially cause nuclear spins to flip up,
but still on the side with the larger Iz, thus leading to a
tendency for �Iz

LL− Iz
RR� to grow.

In the full system, the nuclear state evolves under an in-
homogeneous Knight shift due to the interaction with the
electron spin during the time the electrons occupy the �L↑R↑�
state and also includes the effects of the �L↓R↓� state. We
have considered the elastic limit of the angular-momentum
exchange at the avoided crossing; phonon-assisted coupling
will inevitably increase the transfer rate.20 Further, direct
dipole-dipole interaction of the nuclei will lead to spin dif-
fusion on longer time scales. Full inclusion of these effects,
which greatly enlarge the parameter space of the problem
and are at the heart of the experimental picture, is beyond the
scope of this work. Here we simply show an important feed-
back mechanism by which a spin-flip-flop process dependent
only on the I� operators can influence the Overhauser differ-
ence field Iz

LL− Iz
RR.

For the purpose of focusing on the physics of the feed-
back mechanism we here assume that the electronic system
is initialized in either � or �L↑R↑� and driven through the
avoided crossing, and it is this process only which alters the
nuclear spin state. In the following, we will consider only
loading in the � state, though �L↑R↑�-loading effects follow
easily.

FIG. 1. �Color online� Top: electronic states near the �1,1� to
�0,2� stability diagram transition. Crossing of � and �T+� at �̃ be-
comes avoided crossing in presence of transverse Overhauser field
gradient. Bottom: overlap of the � state with �a� S�0,2�, with
�b� �L↑R↓�, and with �c� �L↓R↑�. Parameters: Bext=0.2T,
�=1.2 �eV, �=1000, EC=0.6 meV, and Vx=1 �eV.
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Nuclear States. To further analyze the Hamiltonian, Eq.
�2�, it is helpful to introduce a simplified basis for the nuclear
states in which all of the nuclei are either in the left or right
dot and all within a given dot interact equally with the elec-
tron. In this “box model” �
L�r��2 is taken as a constant
within a spherical “box” of some volume, V. The wave func-
tions then factor out of the sum in Eq. �3� and the squares of
the total angular momenta I�

2 are conserved,21 where
I����vA /V��m��I�m, and where �� �L ,R�. Thus, the elec-
trons essentially interact with two composite nuclear spins,
one on the left and one on the right. The nuclear state basis is
�IL , IR , ILz , IRz�, where I��I�+1� is the eigenvalue of �I����2

and I�z is the eigenvalue of Iz
��. Finally, for fixed IL , IR, it is

convenient to transform to the basis of �� ILz− IRz and
s� ILz+ IRz.

The strength of the preference for left or right dot spin flip
depends on the ratio r�c /b at �̃. This depends on � and on
Bext. For example, smaller Bext results in smaller �̃, where the
ratio c /b increases �for �0� as shown in Fig. 1. Exactly
how large c /b can get depends on Vx which, in the example
of Fig. 1, we have set to 1 �eV.22

In Fig. 2 we plot the value of r��̃� as a function of Bext for
various values of �. The key point is that r��̃� increases
monotonically with �, and it also decreases monotonically
with Bext �and hence �̃�. Interestingly, because the �R↑R↓�
state is coupled equally to �L↑R↓� and �L↓R↑�, the value of
b /c is independent of �.

The flip-flop process naturally also depends on the rate at
which � is swept since the � variation must be sufficiently
slow in order to be adiabatic15 and remain on the lower
branch of the �-�L↑R↑� avoided crossing. More generally,
the character of the state evolution can be examined as a
Landau-Zener tunneling problem.23

The evolution of the full nuclear state is complex and the
experimental manifestations of that evolution are ambiguous.
Nevertheless, as a possible baseline for more detailed studies
of the nuclear evolution, we describe a simple, incoherent
model which results in narrowing of the distribution of �.

If we assume that the system is in the well-defined state
��� � �IL , IR , ILz , IRz� and the detuning is moved quickly to �̃

and held there for short time �, we can compute, to leading
order in �, the probability for a nuclear spin to flip in the
right dot as

�R�ILz,IRz → ILz,IRz − 1� � �R�s,� → s − 1,� + 1�

=
�2

�2 �ILz,IRz − 1�I−
RR�ILz,IRz��2 =

A2�R−
2 �2

4�2 �b�2

�5�

where we have suppressed the IL, IR dependence for brevity
and where the matrix elements of the ladder operators
are given by the well-known formulas: ���

�I� , I�z�1�I��I� , I�z�=�I��I�+1�− I�z�I�z�1�. Equation
�5� is nothing more than the hyperfine-induced transition
probability from ��� � �ILz , IRz� to �L↑R↑� � �ILz , IRz−1�. Simi-
larly, the flip probability in the left dot is proportional to the
c component of �

�L�s,� → s − 1,� − 1� =
A2�L−

2 �2

4�2 �c�2. �6�

Now, assuming a probability distribution W�s ,�� for the
nuclear state �at fixed IL , IR�, the condition for W to be sta-
tionary in its dependence on � can be written 	cf. Fig. 3�b�
,

W�s + 1,� − 1��L�s + 1,� − 1� = W�s,���R�s,�� ,

W�s,� − 1� = W�s,��
�R−

2 �s,��
�L−

2 �s,� + 1�
�b����2

�c�� − 1��2
, �7�

where we have assumed that W�s��W�s+1� and we have
used the fact that b and c depend very weakly on s �only
through the s-dependence of �̃�.

Recursion relation Eq. �7� can be solved iteratively and
the influence of the narrowing force evaluated. In Fig. 3 we
have plotted W��� computed with the ratio �R− /�L− set to
unity to show only the narrowing from the inhomogeneous
Overhauser effect described here with the same electronic
parameters as in Fig. 1, and with IL= IR=1000 �Ref. 24�;
including the �’s induces more narrowing. For comparison

FIG. 2. The wave-function ratio r�c /b evaluated at the �-�T+�
crossing point, �̃, as a function of Bext for various values of the
nuclear spin z component difference �. r��̃� is monotonically in-
creasing with � and decreasing with Bext.

FIG. 3. �main� Reduced distribution W�� ,s�, calculated from
Eq. �7� �solid lines�, for Vx=1 �eV as a function of � for various
Bext=0.05,0.10, . . . ,0.75 T �lower fields have narrower W�; and
thermal W��� �dashed�, averaged over s, all with IL= IR=103. Inset
�a� narrowing factor �T /��Bext� versus Bext. Inset �b� Illustration of
ILz− IRz plane. � and s are the diagonal coordinates, with
�� ILz− IRz.
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we show the T→� thermal distribution of �, averaged over
s, also for IL= IR=1000. Inset �a� shows the ratio of the root
mean square �rms� � in the thermal distribution, �T, to the
rms � with the narrowing force at varying Bext, ��Bext�. A
substantial narrowing of W��� results from the inhomoge-
neous Overhauser effect.

Discussion. According to the mechanism described here,
repeated loading of the � state and pulsing to �L↑R↑� should
initially drive � toward zero �ILz= IRz�. However, nothing in
our model forces polarization to stop once �=0, and contin-
ued pulsing should ultimately drive ILz→−IL and IRz→−IR
or, equivalently, �= IR− IL and s=−IL− IR. The box model
approximation breaks down before this polarization is
reached, as the hyperfine coupling is not uniform for all of
the nuclei. A fuller treatment of the inhomogeneous hyper-
fine problem is required to determine the evolution of the
nuclear system on such timescales.23

Pulsing in the opposite direction ��L↑R↑�→�� should
drive the larger of ILz, IRz to grow faster than the smaller,
increasing ���. In our model, however, ultimately both spins
will fully polarize, and again a fuller treatment is required.

The experimental situation is clouded by indirect access

to the nuclear polarizations as well as uncertainty of the in-
fluence of other processes on the nuclear spin state. Reilly
et al.8 reported a narrowing of W��� with �R↑R↓�-loading
experiments. However, more recent work9 presents a com-
plex picture where pulsing in either direction produces
growth of �. We conclude that mechanisms beyond the feed-
back described here, in particular those affecting the inhomo-
geneous spin flips within each dot, are required for a full
understanding of the problem. We note that a recent article
by Yao25 discusses a model similar to that described herein.
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