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The description of excited state dynamics in energy transfer sys-
tems constitutes a theoretical and experimental challenge in
modern chemical physics. A spectroscopic protocol that systemati-
cally characterizes both coherent and dissipative processes of the
probed chromophores is desired. Here, we show that a set of two-
color photon-echo experiments performs quantum state tomogra-
phy (QST) of the one-excitonmanifold of a dimer by reconstructing
its density matrix in real time. This possibility in turn allows for a
complete description of excited state dynamics via quantum pro-
cess tomography (QPT). Simulations of a noisy QPT experiment
for an inhomogeneously broadened ensemble of model excitonic
dimers show that the protocol distills rich information about
dissipative excitonic dynamics, which appears nontrivially hidden
in the signal monitored in single realizations of four-wave mixing
experiments.

excitation energy transfer ∣ nonlinear spectroscopy ∣ quantum information
processing ∣ open quantum systems ∣ quantum biology

Excitonic systems and the processes triggered upon their inter-
action with electromagnetic radiation are of fundamental

physical and chemical interest (1–6). In nonlinear optical spectro-
scopy (NLOS), a series of ultrafast femtosecond pulses induces
coherent vibrational and electronic dynamics in a molecule or
nanomaterial, and the nonlinear polarization of the excitonic sys-
tem is monitored both in the time and frequency domains (7, 8).
To interpret these experiments, theoretical modeling has proven
essential, framed within the Liouville space formalism popular-
ized by Mukamel (7). Implicit in these calculations is the evolu-
tion of the quantum state of the dissipative system in the form of a
density matrix. The detected polarization contains information of
the time dependent density matrix of the system, although not in
the most transparent way. An important problem is whether these
experiments allow quantum state tomography (QST)—that is,
the determination of the density matrix of the probed system at
different instants of time (9, 10). A more ambitious question is if a
complete characterization of the quantum dynamics of the system
can be performed via quantum process tomography (QPT) (11,
12), a protocol that we define in the next section. In this article,
we show that both QST and QPT are possible for the single-
exciton manifold of a coupled dimer of chromophores with a ser-
ies of two-color photon-echo (PE) experiments. We also present
numerical simulations on a model system and show that robust
QSTand QPT is achievable even in the presence of experimental
noise as well as inhomogeneous broadening. This article provides
a conceptual presentation, and interested readers may find deri-
vations and technical details in SI Appendix.

Basic Concepts of QPT
Consider a quantum system that interacts with a bath. We can
describe the full state of the system and the environment at time
T by the density matrix ρtotalðTÞ. The reduced density matrix of
the system is ρðTÞ ¼ TrB ρtotalðTÞ, where the trace is over the
degrees of freedom of the bath. If the initial state is a product,
ρtotalð0Þ ¼ ρð0Þ ⊗ ρBð0Þ (always with the same initial bath state
ρBð0Þ), then the evolution of the system may be expressed as a
linear transformation (13):

ρabðTÞ ¼ ∑
cd

χabcdðTÞρcdð0Þ: [1]

The central object of this article is the process matrix χðTÞ, which
is independent of the initial state ρð0Þ. As opposed to master
equations that are written in differential form, Eq. 1 can be re-
garded as an integrated equation of motion for every T. It holds
both for Markovian and non-Markovian dynamics of the bath,
and it always leads to positive density matrices. Note that χðTÞ
completely characterizes the dynamics of the system. Preserving
Hermiticity, trace, and positivity of ρðTÞ imply, respectively, the
relations (section I of SI Appendix)

χabcdðTÞ ¼ χ�badcðTÞ; [2]

∑
a

χaacdðTÞ ¼ δcd; [3]

∑
abcd

z�acχabcdðTÞzbd ≥ 0; [4]

where z is any complex valued vector. Using Eqs. 2 and 3, for a
system in a d-dimensional Hilbert space, χðTÞ is determined
by d4 − d2 real valued parameters (11). Operationally, QPT
can be defined as an experimental protocol to obtain χðTÞ. Spec-
troscopically, χðTÞ may be reconstructed by measuring ρðTÞ (i.e.,
performing QST) given some choice of initial state ρð0Þ, where
the ρð0Þ are chosen successively from a complete set of initial
states (14–17). Because we are interested in energy transfer
dynamics, this procedure shall be performed at several values
of T. In this article, we show how to perform QPT for a model
coupled excitonic dimer using two-color heterodyne photon-echo
experiments.

Description of the System and Its Interaction with Light
Consider an excitonic dimer interacting with a bath of phonons.
The excitonic part of the Hamiltonian, describing the system with
the environment frozen in place, is given by (4, 8, 18):

HS ¼ ωAa
þ
AaA þ ωBa

þ
B aB þ JðaþAaB þ aþB aAÞ ¼ ωαcþα cα þ ωβc

þ
β cβ:

[5]

where aþi and cþj (ai and cj) are creation (annihilation) operators
for site i ∈ fA;Bg and delocalized j ∈ fα;βg excitons, respectively.
ωA ≠ ωB are the first and second site energies, J ≠ 0 is the Cou-
lombic coupling between the chromophores. We define the aver-
age of site energies ω ¼ 1

2
ðωA þ ωBÞ, difference Δ ¼ 1

2
ðωA − ωBÞ,
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and mixing angle θ ¼ 1
2
arctanð JΔÞ. Then cα ¼ cos θaA þ sin θaB,

cβ ¼ − sin θaA þ cos θaB, ωα ¼ ωþ Δ sec 2θ, and ωβ ¼ ω−
Δ sec 2θ. For convenience, we define the single-exciton states
jαi ¼ cþα jgi, jβi ¼ cþβ jgi, where jgi is the ground state, and the
biexcitonic state jf i ¼ aþAa

þ
B jgi ¼ cþα cþβ jgi. The model Hamilto-

nian does not account for exciton–exciton binding or repulsion
terms, so the energy level of the biexciton is ωf ¼ ωα þ ωβ ¼
ωA þ ωB. Denoting ωij ≡ ωi − ωj, we have ωαg ¼ ωfβ and
ωβg ¼ ωfα.

We are interested in the perturbation of the excitonic system
due to three laser pulses:

V ðt0Þ ¼ −λ∑
3

i¼1

μ̂ · eiEðt0 − tiÞfeiki ·r−iωiðt0−tiÞ þ c:c:g; [6]

where λ is the intensity of the electric field, assumed weak, μ̂ is
the dipole operator, and ei, ti, ki, ωi denote the polarization *,
time center, wavevector, and carrier frequency of the i-th pulse.
Eðt0Þ is the slowly varying pulse envelope, which we choose to
be Gaussian with fixed width σ for all pulses, Eðt0Þ ¼ e−t

02∕2σ2 .
The polarization induced by the pulses on the molecule located
at position r is given by Pðr;t0Þ ¼ Trðμ̂ρðr;t0ÞÞ. This quantity can
be Fourier decomposed along different wavevectors as
Pðr;t0Þ ¼ ∑sPsðt0Þeiks ·r, where the ks are linear combinations of
wavevectors of the incoming fields. Radiation is produced due
to the polarization (proportional to iPðr;t0Þ). We can choose to
study a single component Ps by detecting only the radiation
moving in the direction ks. This is achieved by interfering the
radiation with a fourth pulse moving in the direction ks, called
the local oscillator (LO) (7). In particular, we shall be interested
in the time-integrated signal in the photon-echo (PE) direction,
k4 ¼ kPE ¼ −k1 þ k2 þ k3. This heterodyne-detected signal
½SPE�ω1;ω2;ω3;ω4

e1;e2;e3;e4 , where the subscripts indicate the polarizations
of the four light pulses and the superscripts indicate their carrier
frequencies, is proportional toZ

∞

−∞
dt0eiω4ðt0−t4ÞEðt0 − t4Þe4 · iPPEðt0Þ: [7]

Spatial integration over the volume of probed molecules selects
out the component PPEðt0Þ from the Pðr;t0Þ. The time integration
yields a signal that is proportional to the components of PPEðt0Þ ·
e4 oscillating at the frequencies of the LO, which is centered
about ω4

†. In this excitonic model, the only optically allowed
transitions are between states differing by one excitation, so
the only nonzero matrix elements of μ̂ are μij ¼ μji for ij ¼ αg,
βg, fα, fβ (section II of SI Appendix).

In the following section, we present the main results of our
study. We show that a carefully chosen set of two-color rephasing
PE experiments can be used to perform a QPTof the first exciton
manifold (Fig. 1). The preparation of initial states is achieved
using the first two pulses at t1 and t2. Initial states spanning the
single-exciton manifold are produced by using the four possible
combinations of two different carrier frequencies for the first two
pulses. In the terminology of PE experiments, these pulses define
the so-called coherence time interval τ ¼ t2 − t1. The time inter-
val between the second and third pulses, called the waiting time
T ¼ t3 − t2, defines the quantum channel (11), which we want to
characterize by QPT. Finally, we carry out QST of the output
density matrix at the instant t3. This task is indirectly performed

by using the third pulse to selectively generate new dipole-active
coherences, which are detected upon heterodyning with the
fourth pulse at t4, that is, after the echo time t ¼ t4 − t3 has
elapsed. Varying the third and fourth pulse frequencies yields
sufficient linear equations for QST. This procedure naturally
concludes the protocol of the desired QPT.

Results
For purposes of the QPT protocol, we assume that the structural
parameters ωαg , ωβg, μαg, μβg, μfα, and μfβ are all known. Informa-
tion about the transition frequencies can be obtained from a
linear absorption spectrum, whereas the dipoles can be extracted
from X-ray crystallography (19). As shown in recent work of
our group, with enough data from the PE experiments, it is also
possible to extract these parameters self-consistently (20, 21).
We proceed to describe the steps of the PE experiment on a
coupled dimer that yield a QPT.

Initial State Preparation. Before any electromagnetic perturbation,
the excitonic system is in the ground state ρð−∞Þ ¼ jgihgj. After
the first two pulses in the k1, k2 directions act on the system,
the effective density matrix ~ρω1 ;ω2

e1 ;e2 ð0Þ (at T ¼ 0) is created. This
density is second order in λ and, combined with the third and
fourth pulses, directly determines the signal. By applying second
order perturbation theory and the rotating-wave approximation
(RWA), we can define an effective initial state (Fig. 2 A–D
and section III of SI Appendix):

~ρω1;ω2
e1 ;e2 ð0Þ ¼ − ∑

pq∈fα;βg
Cp

ω1
Cq
ω2
ðμpg · e1Þðμqg · e2Þ

×GgpðτÞðjqihpj − δpqjgihgjÞ: [8]

This state evolves during the waiting time T to give

~ρω1;ω2
e1;e2 ðTÞ ¼ χðTÞ~ρω1;ω2

e1;e2 ð0Þ; [9]

which holds for T ≳ 3σ, that is, after the action of the first two
pulses has effectively ended. Eq. 9 is of the form of Eq. 1, and
therefore appealing for our QPT purposes. The purely imaginary
coefficients Cp

ωi for p ∈ fα;βg are proportional to the frequency
components at ωpg of the pulse that is centered at ωi:

Fig. 1. A set of photon echo experiments can be regarded as a QPT. Pulses
are centered about t1,t2,t3,t4. Time flows upward in the diagram. The four
pulses define the coherence (τ), waiting (T ) times, and echo ( t) times. This
experiment, in the language of quantum information processing, can be
regarded as consisting of three stages: initial state preparation, free evolu-
tion, and detection of the output state of the waiting time.

*We use the word polarization in two different ways: to denote (a) the orientation of
oscillations of the electric field and (b) the density of electric dipole moments in a
material. The meaning should be clear by the context.

†More precisely, the monitored signal is proportional to ∫ ∞
−∞dtei½ω4 ðt0−t4 Þþφ�Eðt0 − t4Þe4 ·

iPPEðt0Þ þ c:c:, where two experiments are conducted by varying the phase φ of the
LO with respect to the emitted polarization to extract the real and imaginary terms
of Eq. 7. For purposes of our discussion, it is enough to consider the complex valued
signal.
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Cp
ωi ¼ −

λ

i

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
e−σ

2ðωpg−ωiÞ2∕2; [10]

and the propagator of the optical coherence jiihjj is

GijðτÞ ¼ ΘðτÞeð−iωij−ΓijÞτ; [11]

which, for simplicity, has been taken to be the product of a co-
herent oscillatory term beating at a frequency ωij and an exponen-
tial decay with dephasing rate Γij, assumed to be known. ΘðτÞ is
the Heaviside function, so the propagator is finite only for times
τ ≥ 0. We have kept only the −k1 and þk2 components because
those are the only contributions to the signal at kPE.

Eq. 8 has a simple interpretation and can be easily read off
from the Feynman diagrams depicted in Fig. 2 A–D. Because
we will be selecting only light in the kPE direction, we keep only
the portion of the first pulse proportional to eiω1ðt−t1Þ and only the
portion of the second pulse proportional to e−iω2ðt−t2Þ in Eq. 6.
Then, because the state before any perturbation is jgihgj, the first
pulse can only resonantly excite the bra in the RWA (7), gener-
ating an optical coherence jgihpj (where p ∈ fα;βg) with ampli-
tude Cp

ω1
. This coherence undergoes free evolution for time τ

under GgpðτÞ before the second pulse perturbs the system. In
the RWA, this second pulse can act on the ket of jgihpj to yield
jqihpj with amplitude Cq

ω2
and on the bra to create a hole −jgihgj

with amplitude Cp
ω2
, producing Eq. 8. The amplitude of this pre-

pared initial state is proportional to the alignment of the corre-
sponding transition dipole moments with the polarization of the
incoming fields. Once the initial state is prepared, it evolves via
χðTÞ, which is the object we want to characterize. A possible pro-
blem is the contamination of the initial states by terms propor-
tional to a hole −jgihgj every time there is a single-exciton
manifold population jpihpj. This is not a difficulty if we assume:

χabggðTÞ ¼ δagδbg; [12]

that is, if the ground state population does not transform into
any other state via free evolution. This is reasonable because we
may ignore processes where phonons can induce upward optical
transitions. We similarly neglect spontaneous excitation from the
single to double exciton states.

One can see from Eq. 8 that a set of four linearly independent
initial states can be generated by manipulating the frequency
components of the pulses through Cp

ω1
and Cq

ω2
. It is sufficient

to consider a pulse toolbox of two waveforms that create jαi
and jβi with different amplitudes. For instance, by centering one
waveform at ωþ in the vicinity of ωαg and the other at ω− close to
ωβg , we can simultaneously have:

Cα
ωþ ¼ Cβ

ω− ¼ C0; Cβ
ωþ ¼ Cα

ω−
¼ C00; [13]

for purely imaginary numbers C0 ≠ C00. The conceptually simplest
choice, which we shall denote the maximum discrimination
choice (MDC) and is best for QPT purposes, is two waveforms
each resonant with only one transition, so C0 ≫ C00, and we can
neglect C00. Four linearly independent initial states can be pre-
pared by choosing the waveform of each of the first two pulses
from this pulse toolbox.

Evolution. The system evolves during the waiting time T after the
initial state is prepared. Transfers between coherences and popu-
lations are systematically described by χðTÞ. The components of
~ρω1;ω2
e1;e2 evolve in time, described by χðTÞ, without assuming any
particular model for the bath or system-bath interaction, other
than Eq. 12. By definition, the amplitude of the ij component
of ~ρω1;ω2

e1 ;e2 ðTÞ is proportional to χijqpðTÞ, with the exception of
the gg component, which is proportional to χggpqðTÞ þ δpq due
to the contamination of the hole in the initial state. We note that
deexcitation transfers from the single-exciton manifold to ele-
ments involving the ground state (gg;gα;gβ, gα, gβ) are expected
to be small, because such processes are also unlikely to occur on
femtosecond time scales due to either the phonon or the photon
bath. Detailed analysis shows that our protocol can detect decay
into gg but not into gα or gβ. We shall keep these χggqpðTÞ terms in
our equations in order to monitor amplitude leakage errors from
the single-exciton manifold, providing a consistency check for
treating the single-exciton manifold as an effective TLS in the
time scale of interest.

Detection.The last two pulses provide an indirect QSTof the state
after the waiting time. The third perturbation along þk3 and
centered at time t3 will selectively probe certain coherences and
populations of ~ρω1 ;ω2

e1;e2 ðTÞ. As an illustration (see Fig. 2 E and F),
the component of the pulse matching the transition energy ωαg ¼
ωfβ and proportional to Cα

ω3
will, in the RWA, promote the reso-

nant transitions jgi → jαi and jβi → jf i on the ket side, and the
conjugate resonant transitions hαj → hgj and hf j → hβj on the bra
side, the latter of which are irrelevant as we are ignoring transfers
to the biexciton state during the waiting time. These transitions
will generate two sets of optically active coherences in the echo
interval: αg, fβ that oscillate at frequency ωαg, and βg, fα that os-
cillate at ωβg. These sets generate a polarization that interferes
with the LO yielding signals proportional to Cα

ω4
and Cβ

ω4
, respec-

tively. The propagator for the echo time is taken to be as in
Eq. 11. A similar analysis can be repeated for the Cβ

ω3
term.

Analogously to the preparation stage, the same toolbox of two
different waveforms for the third and the fourth pulses allows
discrimination of all final states of ~ρω1;ω2

e1;e2 ðTÞ. Fig. 2 depicts dou-
ble-sided Feynman diagrams for all possible combinations of
preparations and detections with four pulses each chosen from
two waveforms, yielding 16 experiments. By keeping track
of these processes, the signal ½SPE�ω1 ;ω2;ω3;ω4

e1 ;e2 ;e3 ;e4 may be compactly
written as (section IV of SI Appendix):

Fig. 2. Possible state preparations and detections. We list all the possible
preparations and detections of elements of the density matrix at the waiting
time T via a rephasing PE experiment. The double-sided Feynman diagrams
above list all the possible processes detected in a rephasing PE experiment.
Each diagram is related to an element χ ijqpðTÞ due to the prepared state
jqihpj − δpqjgihgj at the beginning of the waiting time and the detected
state ij at the end of it. By combining the preparations in A, B, C, and D,
with the detections in E, F, G, and H, 16 different types of processes can
be enumerated, which can be classified according to the pulse frequencies
of the associated perturbations.
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½SPE�ω1 ;ω2;ω3;ω4
e1;e2 ;e3 ;e4 ðτ;T;tÞ ∝ ∑

p;q;r;s

Cp
ω1
Cq
ω2
Cr

ω3
Cs
ω4
Pp;q;r;s
e1;e1;e3;e4ðτ;T;tÞ; [14]

where the proportionality constant is purely real, and the expres-
sion holds for T;t > 3σ. The terms Pp;q;r;s

e1 ;e2;e3;e4ðτ;T;tÞ are loosely
polarizations (in fact, they are proportional to i times polariza-
tions) ‡ and are given by

Pp;q;α;α
e1 ;e2 ;e3 ;e4ðτ;T;tÞ ¼ −ðμpg · e1Þðμqg · e2ÞGgpðτÞ

× f½ðμαg · e3Þðμαg · e4ÞGαgðtÞ
× ðχggqpðTÞ − δpq − χααqpðTÞÞ
þ ðμfβ · e3Þðμfβ · e4ÞGfβðtÞχββqpðTÞ�g; [15]

and

Pp;q;α;β
e1 ;e2 ;e3;e4ðτ;T;tÞ ¼ −ðμpg · e1Þðμqg · e2ÞGgpðτÞ

× f½ððμfβ · e3Þðμfα · e4ÞGfαðtÞ
− ðμαg · e3Þðμβg · e4ÞGβgðtÞÞχβαqpðTÞ�g: [16]

The remaining terms Pp;q;β;β
e1 ;e2;e3;e4ðτ;T;tÞ, Pp;q;β;α

e1;e2;e3;e4ðτ;T;tÞ follow upon
the interchange α ↔ β. Eqs. 14–16 are the main result of this
article. Each Pp;q;r;s

e1;e2;e3 ;e4 represents the observed signal if the first
(second, third, fourth) laser pulse is resonant only with the p
(q,r,s) transition. The total measured signal ½SPE�ω1 ;ω2 ;ω3;ω4

e1;e2;e3 ;e4 ðτ;T;tÞ
is a weighted sum of these Pp;q;r;s

e1;e2;e3;e4 . Eqs. 15 and 16 show that
each Pp;q;r;s

e1;e2;e3 ;e4 is a linear combination of elements of χðTÞ,
corresponding to the prepared initial states and detected final
states. After collecting the 16 signals ½SPE�ω1 ;ω2 ;ω3;ω4

e1;e2;e3 ;e4 with each
pulse carrier frequency ωi chosen from fωþ;ω−g as in Eq. 13,
with fixed polarizations ei, Eq. 14 can be inverted to yield the
elements of χðTÞ associated with the single-exciton manifold
of the dimer, hence accomplishing the desired QSTs and QPTat
once. Notice that in principle, for a given value of waiting time T,
the one-dimensional (1D) measurements associated with a single
set of τ, t values is enough for purposes of QPT of the single-
exciton manifold. In the most typical measurements, the sample
has isotropically distributed chromophores, so Eq. 14 must be
modified to include isotropic averaging h·iiso (section VI of
SI Appendix). Because the present QPT protocol does not rely
on different polarization settings, we will assume for simplicity
that each of the 16 experiments is carried out with ðe1;e2;e3;e4Þ ¼
ðz;z;z;zÞ. Further technical details of the QPT protocol can be
found in the next section as well as in sections V–XII of
SI Appendix.

Important Observations.

i. Difference between a standard PE experiment and QPT. In the
current practice of NLOS, model Hamiltonians with free para-
meters for the excitonic system, the bath, and the interaction
between them are postulated, and the experimental spectra
are fit to the model via calculation of response functions, from
which structural and dynamical information is extracted (22).
In our language, such experiments involve fitting models to
complicated combinations of quantum processes associated
with χðTÞ. QPT requires only a model for the excitonic system
but not for the bath or the system–bath coupling, making it

suitable for probing systems where the bath dynamics are
unknown. By definition, QPT extracts the elements of χðTÞ,
allowing a straightforward analysis of processes directly asso-
ciated with the density matrix, such as dephasing and relaxation.

ii. QPTcan also be performed with control of time delays τ, t instead
of frequency control. Although 1D measurements suffice for
QPT, suppose the signal is collected for many values of τ
and t. Upon appropriately defined Fourier transformations of
the signal along these variables, a two-dimensional electronic
spectrum (2D-ES) can be constructed where the coherence
propagators of Eq. 11 manifest as four resonances about
ωαg and ωβg along both axes (8, 20, 23). An important obser-
vation follows: The frequencies of the coherent evolutions in
the coherence and echo times are the same as the frequencies
of the first transition and the LO detection. By varying t and τ,
a 2D-ES provides the frequency-controlled information of the
first and fourth pulses. Hence, it is possible to make the first
and fourth pulses sufficiently broadband that their frequency
components at the αg and βg transitions are of similar magni-
tude. Then, the 16 1D experiments can be replaced with four
2D-ES where the second and third pulses are frequency-
controlled. A caveat in this identification is the assumption
that the optical coherences evolve in a form like Eq. 11, with-
out errors of coherence transfers (sections VII and IX of
SI Appendix).

iii. Extension to overlapping pulses. The discussion above assumed
negligible pulse overlaps. Remarkably, Eqs. 14, 15, and 16 still
hold in general for any τ;t ≥ 0 and T > 3σ, with the exception
that Cr

ω3
Cs

ω4
in Eq. 14 must be replaced by

Cr
ω3
Cs

ω4

1

2

�
1þ Erf

�
t
2σ

þ iðω3 − ωrg þ ω4 − ωsgÞσ
2

��
[17]

to account for the fact that the third pulse must act in the sam-
ple before the LO can detect the polarization (section IV B of
SI Appendix). In the case of well-separated pulses, t ≫ σ,
Eq. 17 reduces to Cr

ω3
Cs

ω4
.

The measurements of the real and imaginary part of the PE
signal in the τ;t ¼ 0 limit are recognized with the names of
transient dichroism (TD) and transient birefringence (TB), re-
spectively (24), and are very interesting for QPT. For resonant
TD/TB (ω3 þ ω4 ¼ ωrs þ ωsg), Eq. 17) reduces to 1

2
Cr
ω3
Cs
ω4
,

which shows that the LO monitors only half of the original
polarization because it interferes with the polarization as it
is generated. Consider such a resonant TD/TB experiment
where, even though the pulses can achieve frequency selectivity,
they are short in the sense that σ ≪ 1

λ, where λ is a characteristic
reorganization energy scale of the bath. In this situation, the
bath state will not evolve during the action of the first two
pulses, allowing unambiguous preparation of initial excitonic
states tensored with the same initial equilibrium bath configura-
tion (section VIII of SI Appendix), yielding a consistent QPT.
Also, for τ, t ¼ 0, the free evolution of the optical coherences
does not contribute to the signal, and the short time scale σ
does not allow for errors of population or coherence transfers
to occur in the preparation or detection stages. Hence, a high-
light of the TD/TB signal is that it is determined exclusively by
the dynamics of the single-exciton manifold. Scenarios where
the TD/TB configuration is preferred compared to the PE
are excitonic systems coupled to highly non-Markovian baths
(25–28).

iv. Numerical stability of QPT. An investigation of the stability
properties of the matrices associated with the reconstruction
of χðTÞ from the 16 enumerated experiments shows that our
protocol is very robust upon the variation of the structural
parameters of the system—namely, the ratio between the two
dipole norms dB∕dA, the angle between the site dipoles ϕ, and
the mixing angle θ. General exceptions occur at the vicinity of

‡By comparing Eqs. 7 and 14, we notice that both ½SPE�ω1 ;ω2 ;ω3 ;ω4
e1 ;e2 ;e3 ;e4 ðτ;T;tÞ and Pp;q;r;s

e1 ;e2 ;e3 ;e4 ðτ;T;tÞ
are related to iPPE via a real proportionality constant. Although we shall denote
Pp;q;r;s
e1 ;e2 ;e3 ;e4 ðτ;T;tÞ loosely as a polarization, when referring to its real and imaginary parts,

we must remember that they are proportional to the real and imaginary parts of the
signal ½SPE�ω1 ;ω2 ;ω3 ;ω4

e1 ;e2 ;e3 ;e4 ðτ;T;tÞ, and to the imaginary and real parts of the actual polarization
PPE, respectively.
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θ ¼ 0, π
2
where the coupling J vanishes, as well as for θ ¼ π

4
, 3π

4
and dB∕dA ¼ 1—that is, the homodimer case (sections XI A
and B of SI Appendix).

Numerical Example. To test the extraction of χ from experimental
spectra, we consider a dimer with Hamiltonian parameters that
are on the order of previously reported experiments consisting
of light harvesting systems (18, 29) (ωA ¼ 12;881 cm−1, ωB ¼
12;719 cm−1, J ¼ 120 cm−1 yielding θ ¼ 0.49). We assume a tool-
box of two carrier frequencies ωþ ¼ 13;480 cm−1 and ω− ¼
12;130 cm−1, respectively, so that ωi ∈ fωþ;ω−g for all i, and the
width of the pulses to be FWHM ¼ 28.3 fs in intensity, which
corresponds to σ ¼ 40 fs in amplitude. The parameters satisfy
the MDC condition with C0∕C00 ¼ 20. The pulses are long enough
to guarantee the selectivity of the produced exciton but short
enough to allow for the evolution of the bath induced excitonic
dynamics to be monitored. We choose dB∕dA ¼ 2 and ϕ ¼ 0.3.
We present simulations on the QPT for this system, where each
chromophore is linearly coupled to an independentMarkovian bath
of harmonic oscillators. The dissipative effects are modeled through
a secular Redfield model at temperature T ¼ 273 K (section X of
SI Appendix).

Because we are working in the MDC regime, the signals in
Eq. 14 are simply proportional to hPp;q;r;s

e1;e2 ;e3 ;e4ðτ;T;tÞiiso. Fig. 3 plots
the 16 real parts of the hPp;q;r;s

z;z;z;z ð0;T;0Þiiso values,§ which can be
regarded as signals from the TD/TB setting, or as PE signals
with the coherence and echo time propagators factored out. They
have been calculated via an isotropic average of Eqs. 15 and
16 (sections VI and XI-B). In our simulations, we consider an
inhomogeneously broadened ensemble of 10,000 dimers with
diagonal disorder. The site energies are drawn from Gaussian
distributions centered about ωA and ωB, respectively, both with
standard deviation of σinh ¼ 40 cm−1. For every waiting time T,
the signal is calculated with this fixed ensemble. After a normal-
ization step, the signals are of Oð1Þ or smaller. Additional noise
simulating experimental errors due to laser fluctuations is in-
cluded. This consists of independent realizations at every waiting
time T of Gaussian noise on the measured signals with zero mean
and σlaser ¼ 0.05 standard deviation.

Fig. 3 plots the ideal and inhomogeneously broadened, noisy
signals as continuous and discrete points, respectively. The ideal
signals are calculated from a single dimer with no disorder and
without laser fluctuations. All plots start at T ¼ 3σ ¼ 51 fs, be-
cause for earlier times, the initial states are not yet effectively
prepared. Errors in experimental signals hPp;q;r;s

z;z;z;z ð0;T;0Þiiso trans-
late into errors of reconstructed χðTÞ. An estimate of the ampli-
fication of relative errors is set by the condition numbers of the
matrices to be inverted, which is lower than κ ¼ 2.9 for our set
of parameters dB∕dA, θ, ϕ (section XI B of SI Appendix). Recon-
struction of χmust respect the known symmetries, Eqs. 2–4. Eqs. 2
and 3 are built into the corresponding matrix equations, but Eq. 4
must be included by using a semidefinite programming routine.
The latter is implemented using the open-source package CVX
(30), and the result is Fig. 4, which shows the discrete points
representing the reconstructed elements of χðTÞ from noisy data
on top of the ideal results plotted as continuous functions of T.
The relative error of the inverted χðTÞ averages to 0.12. Notice
that despite the significant inhomogeneous broadening and noise,
there is remarkable agreement between the ideal and the recon-
structed values. This finding is reminiscent of studies due to
Humble and Cina (31).

Fig. 4 illustrates the final objective of a coupled dimer QPT,
namely, the process matrix χðTÞ. Each panel shows processes
of the density matrix as a function of T, conditional on the initial

state being αα (A), ββ (B), or αβ (C and D), with the ideal T-de-
pendence. The detailed balance condition in the Redfield model
implies that χββαα ¼ χααββeωαβ∕kBT, which can be seen in panels A
and B. Also, note that due to the secular approximation, coher-
ence-to-population and the reverse processes are zero. Note that
all the decoherence processes in our model occur within a time
scale of hundreds of femtoseconds, with the αβ coherence evol-
ving through about three periods before practically vanishing (C
and D). Clearly, a more complex interplay of the excitonic system
with the phonon bath is possible (32), but this example illustrates

Fig. 3. Polarization signals from 16 two-color experiments for fixed
τ ¼ t ¼ 0. The legends pqrs correspond to the real parts of the isotropically
averaged signals hPp;q;r;s

z;z;z;zð0;T ;0Þiiso. The panels are organized by QPT initial
state: A for jαihαj, B for jβihβj, C for jαihβj, and D for jβihαj. The ideal signals
are depicted as continuous functions whereas the simulations with inhomo-
geneous broadening and noise are represented as discrete points of the same
color. The imaginary parts show a similar agreement between ideal and noisy
results.

Fig. 4. Elements of χðTÞ for the numerical example. The true values are
shown as a continuous function, whereas the discrete points represent the
extraction from noisy data. The panels are organized according to the initial
state, A for jαihαj, B for jβihβj, and C and D for jαihβj.

§The imaginary parts are not presented due to lack of space, but they show similar
features.
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the essence of the type of information that can be obtained
through QPT.

Conclusions
In this article, we have introduced QPT as a powerful tool to
systematically characterize the dynamics of excitonic systems in
condensed phases. We identified the coherence, waiting, and
echo intervals of the PE experiment with the state preparation,
free evolution, and detection stages of a QPT. In order to achieve
selective state preparation and detection, we suggested frequency
control through pulses of two different colors, although scenarios
with time delays and pulse polarizations as control knobs were
also discussed here and elsewhere (20, 33). By choosing between
these colors for each of the four pulses, 16 experiments can be
carried out, which yield all the elements of χðTÞ related to the
single-exciton manifold. An analysis of the reconstruction of
χðTÞ in the presence of inhomogeneous broadening and experi-
mental noise was provided, and the simulation on a model system
shows that QPT of an excitonic system in condensed phase is a
very plausible goal.

Equipped with χðTÞ, which completely characterizes the exci-
tonic dynamics, a plethora of questions can be rigorously
answered about it. Some examples are: Can the bath be described

as Markovian? If so, does the secular approximation hold, or can
a population spontaneously be transferred to a coherence (34)? If
not, what is its degree of non-Markovianity (35, 36)? Does a given
master equation accurately describe the dynamics of the system?
What is the time scale of each decoherence process? Are the
baths coupled to each chromophore correlated (37, 38)? How
much entanglement is induced in the system upon photoexcita-
tion (39)? Once these questions are answered, interesting ques-
tions of control (40) and manipulation of excitons can be asked.

In summary, a QIP approach to nonlinear spectroscopy via
QPT offers novel insights on the ways to design experiments in
order to extract information about the quantum state of the en-
ergy transfer system. We believe this work bridges a gap between
theoretical and experimental studies on excitation energy transfer
from the QIP and physical chemistry communities, respectively.
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I. PROPERTIES OF χ(T ). DERIVATION OF EQUATIONS 1-4 IN THE ARTICLE

Proof of Eq. 1 in the article.� Consider a system S that interacts with a bath B.

Denote the total density matrix of the composite object as ρtotal, and the reduced density

matrices for the system and the bath as ρ and ρB, respectively. That is, ρ = TrB ρtotal, where

the trace is over the degrees of freedom of the bath, and similarly for ρB. Assume that the

initial state of ρtotal is a tensor product form,

ρtotal(0) = ρ(0)⊗ ρB(0), (S1)

where ρB(0) is always

ρB(0) =
∑
β

pβ|eβ〉〈eβ|, (S2)

for every initial state ρ(0) of the system, with pβ ≥ 0 and
∑

β pβ = 1. At time T , the total

state is a unitary evolution of the initial total state,

ρtotal(T ) = U(T )ρ(0)⊗ ρB(0)U †(T ). (S3)

Here, U(T ) = T (e−i
´ T
0 Htotal(t

′)dt′) is the propagator for the entire object, T is the time-ordering

operator, and

Htotal = HS +HB +HSB, (S4)

where HS, HB, HSB are terms in the Hamiltonian that depend only on degrees of freedom of S,

B, or both, respectively. Taking the trace of Eq. S3 with respect to the states of B yields

ρ(T ) =
∑
αβ

pβEαβ(T )ρ(0)E†αβ(T ) (S5)

where

Eαβ(T ) = 〈eα|U(T )|eβ〉, (S6)

is a Kraus operator and Eq. (S5) is known as the operator sum representation [1, 2].

By identifying:

χabcd(T ) =
∑
αβ

[Eαβ(t)]ac[E
†
αβ(t)]db

=
∑
αβ

pβ〈eα, a|U(T )|eβ, c〉〈eβ, d|U+(T )|eα, b〉 (S7)

we have proven the equivalence between Eq. S5 and 1 in the article. An important caveat which

is clear from the derivation is the following: ρB(0) must be the same for every initial state in S

for χ(T ) to be well-de�ned. Also, di�erent states ρB(0) will obviously yield di�erent processes.

�
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Proof of Eq. 2 in the article.� Manipulating Eq. S7, it follows that

χbadc(T ) =
∑
αβ

pβ〈eα, b|U(T )|eβ, d〉〈eβ, c|U †(T )|eα, a〉

=

(∑
αβ

pβ〈eα, a|U(T )|eβ, c〉〈eβ, d|U †(T )|eα, b〉

)∗
= χ∗abcd(T ). (S8)

�

Eq. 2 in the article preserves the Hermiticity of the density matrix.

ρba(T ) =
∑
cd

χbadc(T )ρdc(0)

=
∑
cd

χ∗abcd(T )ρ∗cd(0)

=

[∑
cd

χabcd(T )ρcd(0)

]∗
= ρ∗ab(T ). (S9)

Proof of Eq. 3 in the article.� Using Eq. S7, and exploiting the fact that U(T )U †(T ) =

U †(T )U(T ) = IS ⊗ IB, the identity on the whole space, we get:

∑
a

χaacd(T ) =
∑
aαβ

pβ〈eα, a|U(T )|eβ, c〉〈eβ, d|U †(T )|eα, a〉

=
∑
aαβ

pβ〈eβ, d|U †(T )|eα, a〉〈eα, a|U(T )|eβ, c〉

=
∑
β

pβ〈eβ, d|eβ, c〉

= δcd. (S10)

�

Eq. 3 in the article preserves the trace of the density matrix:

Tr(ρ(T )) =
∑
acd

χaacd(T )ρcd(0)

=
∑
cd

δcdρcd(0)

= Tr(ρ(0)). (S11)
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Proof of Eq. 4 in the article.� Again, manipulating Eq. S7:

∑
abcd

z∗acχabcd(T )zbd =
∑
abcd

z∗ac
∑
αβ

pβ〈eα, a|U(T )|eβ, c〉〈eβ, d|U †(T )|eα, b〉zbd

=
∑
αβ

pβζαζ
∗
α

≥ 0,

where we have de�ned ζα =
∑

ac z
∗
ac〈eα, a|U(T )|eβ, c〉. �.

Suppose ρ(0) is Hermitian positive-semide�nite (HPS), so that we may write ρcd(0) =∑
k U
∗
kcqkUkd where U is a unitary transformation that diagonalizes ρ(0), and qk ≥ 0 for all

k. Is the HPS condition maintained for ρ(T )? If so, it must satisfy
∑

ab y
∗
aρab(T )yb ≥ 0 for an

arbitrary vector y. Eq. 4 in the article guarantees this:

∑
ab

y∗aρab(T )yb =
∑
abcdk

y∗aχabcd(T )U∗kcqkUkdyb

=
∑
k

∑
abcd

z(k)∗
ac χabcd(T )z

(k)
bd

≥ 0,

where we have identi�ed the vectors z(k) with elements z
(k)
bd =

√
qkUkdyb.

II. TRANSITION DIPOLES OF THE COUPLED DIMER MODEL

Since we are concerned with the interaction of the chromophores with electromagnetic radi-

ation, we make some remarks on the geometry of the transition dipoles (see Fig. S1). Let the

independent site transition dipole moments from the ground to the single exciton be dA and

dB, respectively. The transition dipole moments for the relevant eigenstate transitions are (see

for example, [3]):

 µαg
µβg

 =

 cos θ sin θ

− sin θ cos θ

 dA
dB


 µfα
µfβ

 =

 sin θ cos θ

cos θ − sin θ

 dA
dB

 . (S12)

To simplify notation, we assume that J 6= 0 and the components of dA and dB are all

real, which imply that µij = µji, for all i, j ∈ {α, β, f}. For a coupled heterodimer, the four

dipoles in Eq. (S12) are located in the same plane, but in general have di�erent magnitudes

5



Figure S1: Parameters of the coupled heterodimer. (a) Dipole vectors dA and dB for each chromophoric

site. The angle between them is φ. (b) Transition dipole moments between the di�erent eigenstates

of HS ; angles are referenced with respect to µαg. (c) Energy spectrum of HS and allowed dipole

transitions.

and directions. We label the magnitude of µij with µij and the angle between µij and µαg with

φij, so that the reference is with respect to θαg = 0 (Fig. S1).

The di�erent transition dipole moments can be easily expressed in terms of the angle φ

between dA and dB, and the mixing angle θ. We present these functional dependences for

completeness. We de�ne our coordinate axes so

dA = dAẑ,

dB = (dB cosφ)ẑ + (dB sinφ)x̂. (S13)

We can expressing the components of the transition dipole moments,

µαg = (dB sin θ sinφ)x̂+ (dA cos θ + dB sin θ cosφ)ẑ,

µβg = (dB cos θ sinφ)x̂+ (−dA sin θ + dB cos θ cosφ)ẑ,

µfα = (dB cos θ sinφ)x̂+ (dA sin θ + dB cos θ cosφ)ẑ,

µfβ = (−dB sin θ sinφ)x̂+ (dA cos θ − dB sin θ cosφ)ẑ. (S14)

The angles between the di�erent transition dipole moments can be calculated as

cos(φij) =
µαg · µij
µαgµij

,

sin(φij) =
|µαg × µij|
µαgµij

. (S15)
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where µij denotes the norm of the respective dipole. For a homodimer with θ = π
4
, dA = dB

and µfα = µαg, µfβ = −µβg, yielding only two independent directions for the four transition

dipoles [4]. For a homodimer with θ = 3π
4
, the conclusion is similar.

III. STATE PREPARATION. DERIVATION OF EQUATION (9) IN THE ARTICLE

The second order density matrix in λ that results after considering the components of the

�rst two pulses at −k1 and +k2 can be calculated in Liouville space as (see [5]),

ρ̃ω1,ω2
e1,e2

(t2 + T )

=

(
1

i

)2 ˆ t2+T

−∞
dt′′
ˆ t′′

−∞
dt′G2(t2 + T, t′′)Ṽ(t′′)G1(t′′, t′)Ṽ(t′)ρ(−∞), (S16)

where ρ(−∞) = |g〉〈g|, or alternatively, in Liouville space notation, ρ(−∞) = |gg〉〉, is the

state of the system before the perturbations. We are interested in the situation T > 3σ, that

is, after the action of the two pulses has practically ceased. The perturbation superoperator is

Ṽ(t) =
∑3

i=1 Ṽi(t), where Ṽi(t) = [Ṽi, ·], and

Ṽ1(t) = −λµ̂< · e1E(t− t1)eiω1(t−t1) (S17)

Ṽ2(t) = −λµ̂> · e2E(t− t2)e−iω2(t−t2)

Ṽ3(t) = −λµ̂> · e3E(t− t3)e−iω3(t−t3).

These expressions conveniently adapt Eq. 6 in the article to account for the phase matching

direction of kPE and to consider the RWA, where µ̂< =
∑

ωp<ωq
µpq|p〉〈q| promotes emissions

from the ket or absorptions on the bra, and µ̂> = (µ̂<)+ induces the opposite processes.

A. Well separated pulses 1 and 2

We can simplify Eq. S16 by considering that: (a) if τ > 3σ, the pulses are well separated,

and we can perform the substitution Ṽ(t′) = Ṽ1(t′) and Ṽ(t′′) = Ṽ2(t′′); (b) we focus only

on the dominant contribution due to the resonant transitions. As mentioned in the text, this

calculation can be easily grasped by analyzing the double-sided Feynman diagrams in Fig. 2a�

d. Since we are looking for signals only in the direction −k1 + k2 + k3, the �rst pulse must

interact via the operator µ̂<, so it can only act on the bra to produce optical coherences |gp〉〉.

We assume that these coherences evolve unitarily together with a constant dephasing rate (this

assumption is not necessary, but it simpli�es our analysis):

G1(t′′, t′) = G(t′′ − t′)

=
∑
mn

Gmn(t′′ − t′)|mn〉〉〈〈mn|, (S18)
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where Gmn(τ) is given by Eq. 11 in the article. The second pulse can act on the ket to create

the coherence |pq〉〉 if p 6= q. However, in case the frequency component of the second pulse is

the same as that of the �rst pulse, it can excite the ket to form a population |qq〉〉 or de-excite

the bra to go back to −|gg〉〉 (with opposite sign due to the commutator). For the evolution in

the waiting time, we use the following identity:

G2(t2 + T, t′′) = χ(T )G(t2 − t′′), (S19)

where we have formally introduced the process matrix χ(T ) acting as the propagator after time

t2. Altogether, we have in Liouville space a perturbation, a free evolution, another perturbation,

and free evolution. The e�ective second order density matrix associated with the perturbations

at −k1 + k2 is given by:

ρ̃ω1,ω2
e1,e2

(t2 + T )

= −
(
−λ
i

)2∑
pq

[ ˆ t2+T

−∞
dt′′χ(T )

{
Gqp(t2 − t′′)

(
µqg · e2|q〉〈g|E(t′′ − t2)e−iω2(t′′−t2)

)
×
ˆ t′′

−∞
dt′Ggp(t′′ − t′)|g〉〈g|

(
|g〉〈p|µpg · e1E(t′ − t1)eiω1(t′−t1)

)}
−
ˆ t2+T

−∞
dt′′χ(T )

{
Ggg(t2 − t′′)

×
ˆ t′′

−∞
dt′Ggp(t′′ − t′)|g〉〈g|

(
|g〉〈p|µpg · e1E(t′ − t1)eiω1(t′−t1)

)
×
(
|q〉〈g|µqg · e2E(t′′ − t2)eiω1(t′′−t2)

)}]
(S20)

This calculation is a double integral over all the possible times t′ and t′′ in which the perturba-

tions due to the pulses at −k1 and +k2 can act due to their �nite width σ. The time-ordering

consideration is unimportant for τ, T � σ, and in fact, both integrals can be extended to the

entire real space:
´ t2+T

−∞ dt′′
´ t′′
−∞ dt

′(·) ≈
´∞
−∞ dt

′′ ´∞
−∞ dt

′(·). As discussed in the next subsection,

the approximation T � σ is needed (so that the pulse envelopes are nearly zero at time t2 +T ),

but the τ � σ assumption is unnecessary. We then rewrite

≈ −
(
−λ
i

)2∑
pq

(µpg · e1)(µqg · e2)

×
ˆ ∞
−∞

d(t′ − t1)
(
Ggp(t1 − t′)E(t′ − t1)eiω1(t′−t1)

)
×χ(T )

{ˆ ∞
−∞

d(t2 − t′′)Gqp(t2 − t′′)E(t′′ − t2)e−iω2(t′′−t2)Ggp(t′′ − t2)|q〉〈p|

−δpq(Ggg(t2 − t′′)E(t′′ − t2)e−iω2(t′′−t2)Ggp(t′′ − t2)|g〉〈g|)
}

(S21)
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The length of the pulse σ is much shorter than the dynamics induced by the bath. Therefore,

σ � 1
Γmn

, and dephasing contributions can be neglected within the integral so that Ggp(t1−t′) ≈

eiωpg(t1−t′), Gqp(t2 − t′′)Ggp(t′′ − t2) ≈ e−iωqp(t2−t′′)eiωpg(t2−t′′) = e−iωqg(t2−t′′), and Ggp(t′′ − t2) ≈

e−iωpg(t′′−t2), Ggg(t′′− t2) ≈ e−iωgg(t′′−t2). However, the dephasing terms are non-negligible in the

free evolution between the pulses if τ � σ, and the term Ggp(τ) in the �nal expression cannot

in general be simpli�ed to e−iωgpτ . Then we have

≈ −
(
−λ
i

)2∑
pq

(µpg · e1)(µqg · e2)

ˆ ∞
−∞

ds′e−iωpgs
′
E(s′)eiω1s′

ˆ ∞
−∞

ds′′eiωpgs
′′

×χ(T )
{
E(s′′)e−iω2s′′(|q〉〈p| − δpq|g〉〈g|)

}
= −χ(T )

{∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(t2 − t1)(|q〉〈p| − δpq|g〉〈g|)

}
, (S22)

The �nal result has a clear physical interpretation: Each of the transitions depicted in the

diagrams in Fig. 2a-d is controlled by the frequency components of the pulse at the given

transition (terms Cp
ω1

and Cq
ω2
), as well as the alignment between the transition dipole and

the pulse polarization. Free evolution of the optical coherence between the perturbations is

given by Ggp(τ). Once the state |q〉〈p| − δpq|g〉〈g| is formed, the superoperator χ(T ) acts on it,

encoding both coherent and dissipative processes.

B. Overlapping pulses 1 and 2

We now consider 0 ≤ τ < 3σ. Eq. (9) in the article rigorously holds for this more general case.

For the contribution due to the original diagrams in Fig. 2a�d, we carry out the same double

integral of Eq. (S20), but we keep it time ordered as
´∞
−∞ dt

′′ ´ t′′
−∞ dt

′(·). Additionally, each

diagram in Fig. 2a�d corresponds to another diagram where the pulse at +k2 acts before the one

at −k1, but yields back the same state after the two pulses (for example, the one corresponding

to Fig. 2b would be gg → βg → βα). Their contributions to [ρ
(2)
−k1,k2

]ω1,ω2
e1,e2

(t2 + T ) can be easily

shown to be
´∞
−∞ dt

′′ ´∞
t′′
dt′(·), where the integrand and the dummy variable convention are the

same as before. The sum of the two contributions yields back the double integral as in Eq.

(S21).

IV. STATE DETECTION. DERIVATION OF EQUATIONS 14-16 IN THE ARTICLE

The techniques to derive these equations are the same as the ones used for the previous

section. However, the proliferation of terms makes the full exposition of the derivation unwieldy.

Therefore, we only illustrate how some sample terms arise.
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A. Well separated pulses 3 and 4

Let us start by noting that, using Eq. (9) in the article, the element ij of ρ̃ω1,ω2
e1,e2

(t2 + T ) can

be expressed as:

〈i|ρ̃ω1,ω2
e1,e2

(t2 + T )|j〉〈
i

∣∣∣∣∣−χ(T )

{∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(τ)(|q〉〈p| − δpq|g〉〈g|)

}∣∣∣∣∣ j
〉

= −
∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(τ)(χijqp(T )− δpqδijδig). (S23)

We de�ne [ρ
(3)
−k1,k2,k3

]ω1,ω2,ω3
e1,e2,e3

(t3 + t) analogously to the way ρ̃ω1,ω2
e1,e2

(t2 + T ) was de�ned in Eq.

(S16), that is, the third-order in λ density matrix due to the perturbations corresponding to

the phase-matching direction −k1 + k2 + k3. For t � σ, we can easily calculate the matrix

elements of [ρ
(3)
−k1,k2,k3

]ω1,ω2,ω3
e1,e2,e3

(t3 + t) that yield an optical dipole, say αg, and can then �nd the

contribution of the latter to the polarization via trace with respect to µ̂ (see Fig. 2e and h):

Tr(µ̂〈α|[ρ(3)
−k1,k2,k3

]ω1,ω2,ω3
e1,e2,e3

(t3 + t)|g〉|α〉〈g|)

= −Tr[µ̂
∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(τ)

×
(
−λ
i

) ˆ t3+t

−∞
dt′Gαg(t3 + t− t′)E(t′ − t3)e−iω3(t′−t3)

×{
(
µαg · e3|α〉〈g|

) (
e−iωgg(t′−t3) (χggqp(T )− δpq) |g〉〈g|

)
−
(
e−iωαα(t′−t3)χααqp(T )|α〉〈α|

) (
|α〉〈g|µαg · e3

)
−
(
e−iωαβ(t′−t3)χαβqp(T )|α〉〈β|

) (
|β〉〈g|µβg · e3

)
}]

≈ −
∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(τ)

×{Cα
ω3

(µαg · e3)Gαg(t)(χggqp(T )− δpq − χααqp(T ))

−Cβ
ω3

(µβg · e3)Gαg(t)χαβqp(T )}µαg, (S24)

where, just as before, we have used the fact that σ � 1
Γαg

to approximate that Gαg(t3 + t− t′) ≈

Gαg(t)eiωαg(t′−t3), and the integrals have been extended to the entire real axis. The third pulse

at +k3 can excite the ket or de-excite the bra of the output state at the waiting time. The

calculation above simply enumerates the resonant transitions gg, αα, αβ → αg due to the laser

components associated with Cα
ω3
, Cα

ω3
, and Cβ

ω3
, respectively, and takes the trace of the optical

coherence with respect to the dipole operator: Tr(µ̂|α〉〈g|) = µαg. Recall that we have chosen

the dipole elements to be purely real.
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The detection of the polarization due to the αg coherence occurs through heterodyning.

The fourth ultrashort pulse interferes with the coherence oscillating as eiωαg(t′′−t4), yielding a

contribution to the time integrated signal encoded by:

ˆ ∞
−∞

dt′′eiω4(t′′−t4)E(t′′ − t4)e−iωαg(t′′−t4)

= i
√

2πσ2e−σ
2(ωαg−ω4)2/2

∝ Cα
ω4
. (S25)

In words, the Fourier components of the fourth pulse �lter the optical coherences of the

polarization associated sample. In our case, the polarization due to the coherence αg will be

detected as Cα
ω4
, that is, proportionally to the frequency component of the fourth pulse at ωαg.

Altogether, the calculation reads:

ˆ ∞
−∞

eiω4(t′′−t4)E(t′′ − t4)e−iωαg(t′′−t4)

×e4 · Tr(µ̂〈α|[ρ(3)
−k1,k2,k3

]ω1,ω2,ω3
e1,e2,e3

(t3 + t)|g〉|α〉〈g|)

∝ Cα
ω4
e4 · Tr(µ̂〈α|[ρ(3)

−k1,k2,k3
]ω1,ω2,ω3
e1,e2,e3

(t3 + t)|g〉|α〉〈g|)

= −
∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(τ)

×{Cα
ω3
Cα
ω4

(µαg · e3)(µαg · e4)Gαg(t)(χggqp(T )− δpq − χααqp(T ))

−Cβ
ω3
Cα
ω4

(µβg · e3)(µαg · e4)Gαg(t)χαβqp(T )}. (S26)

This exercise can be repeated for the rest of the optical coherences which occur in the echo

time and yield detectable dipoles: βg, fα, fβ (Fig. 2-e,f,g,h). The total signal is

[SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t)

=
∑

uv=αg,βg,fα,fβ

ˆ ∞
−∞

dt′′eiω4(t′′−t4)E(t′′ − t4)e−iωij(t
′′−t4)

×e4 · Tr(µ̂〈u|[ρ(3)
−k1,k2,k3

]ω1,ω2,ω3
e1,e2,e3

(t3 + t)|v〉|u〉〈v|), (S27)

which yields Eq. 14 in the article. That equation has been rewritten by grouping the terms in

the forms of Eqs. 15 and 16 in the article, and their analogues upon the α, β → β, α substitutions

in order to classify the processes corresponding to the frequencies of the transition due to the

third pulse and the heterodyne detection.
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B. Overlapping pulses 3 and 4

We now consider 0 ≤ t rather than 3σ < t, to consider overlapping pulses 3 and 4. Eq. 14 in

the article must be slightly modi�ed when the overlap in time between the third and the fourth

pulses is signi�cant. As opposed to Section III-B of this Appendix, where the �rst pulse can

act on the system before the second pulse and viceversa, in the detection stage, the third pulse

must act on the system to yield a polarization before the fourth pulse (which does not interact

with the system) can detect it. Hence, the LO cannot be regarded on the same footing as the

other three pulses.

First, we state the solution to the relevant integral:

ˆ ∞
−∞

dt′′
ˆ t′′

−∞
dt′eiω4(t′′−t4)E(t′′ − t4)e−iωuv(t′′−t4)Guv(t)eiωuv(t′−t3)E(t′ − t3)e−iω3(t′−t3)e−iωij(t

′−t3)

=
(√

πσ2e−(ω3−(ωuv−ωij))2σ2/2
)(√

πσ2e−(ω4−(ω4−ωuv))2
)

×
(

1 + Erf

(
t

2σ
+

(ω3 − (ωuv − ωij) + ω4 − ωuv)σ
2

))
Guv(t), (S28)

which applies to the ij → uv transition caused by the third pulse at +k3, followed by an e�ective

free evolution Guv(t) for the echo interval t = t4− t3, and the detection of the optical coherence

uv via the LO. Importantly, the upper limit of the integral over t′, associated with the action

of the third pulse, cannot be taken to ∞, since the LO may interfere with the transients of the

polarization before the envelope of the third pulse is e�ectively over. There is no contribution

from the complementary integral going from t′′ to ∞ since the LO is assumed not to interact

with the system and, hence, does not contribute to the polarization of the sample.

Repeating the derivation of Eq. S24 by not taking the upper limit of the t′′ integral to∞, it

can be seen that the only modi�cation to Eq. 14 in the article is given by Eq. 17 in the article.

That is, the amplitudes of the third transition and the action of the LO are correlated by an

error function. In the limiting case when t� σ, Eq. 17 recovers Cr
ω3
Cs
ω4
, since Erf(x)→ 1 as

<{x} → ∞.

V. OVERALL MULTIPLICATIVE CONSTANT

Overall multiplicative constant. Eq. (14) in the article is de�ned up to a propor-

tionality constant which depends on many factors such as the concentration of the molecules in

the experimental sample and the e�ciency of the mirrors in the optical setup. This factor may

be determined by performing the extraction of χ(T ) up to that constant, and then normalizing
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it by enforcing the trace preservation condition of Eq. 3 in the article to hold for population

initial states, c = d.

VI. ISOTROPIC AVERAGES

The probed sample is an ensemble of isotropically distributed molecules in solution. The

isotropic average 〈·〉 for a tetradic (µa · e1)(µb · e2)(µc · e3)(µd · e4) is given by [6]:

〈(µa · e1)(µb · e2)(µc · e3)(µd · e4)〉iso

=
∑

m1m2m3m4

I(4)
e1e2e3e4;m1m2m3m4

×[(µa ·m1)(µb ·m2)(µc ·m3)(µd ·m4)], (S29)

where the isotropically invariant tensor is given by,

I(4)
e1e2e3e4;m1m2m3m4

=
1

30
[δe1e2δe3e4 δe1e3δe2e4 δe1e4δe2e3 ]

×


4 −1 −1

−1 4 −1

−1 −1 4



δm1m2δm3m4

δm1m3δm2m4

δm1m4δm2m3

 . (S30)

Here, ei and mi are the polarizations of the pulses in the lab and the molecular frame, re-

spectively. The isotropic average consists of a sum of molecular frame products [(µa ·m1)(µb ·

m2)(µc ·m3)(µd ·m4)] weighted by I
(4)
e1e2e3e4;m1m2m3m4 . Via this procedure, Eq. 14 in the article

becomes:

〈[SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t)〉iso =
∑
p,q,r

Cp
ω1
Cq
ω2
Cr
ω3
Cs
ω4
〈P p,q,r,s

e1,e2,e3,e4
(τ, T, t)〉iso. (S31)

Due to the structure of Eq. S30, there are signals which vanish in isotropic conditions even

though they are �nite otherwise. An interesting consequence of this fact is that QPT is not

fully realizable for homodimers, since coherence to population and the reverse processes cannot

be detected under isotropic conditions [4].

VII. ERRORS IN STATE PREPARATION AND DETECTION

Nontrivial bath-induced dynamics during the coherence or echo times could decrease the

robustness of the QPT. Such dynamics manifest as deviations from Eq. (11) in the article and

13



could be diagnosed by analyzing the signal [SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t) collected as a function of τ ,

with �xed T and t values, or alternatively, by varying t with τ, t �xed. A detailed study of this

possibility will be presented elsewhere. Similarly, if the bath evolves away from its equilibrium

con�guration during the coherence time, with dynamics dependent on the excitonic state, then

the initial state for QPT will not be well-de�ned. This problem can be avoided by taking

τ = t = 0 (TD/TB experiments) as described in the article and in the next point.

VIII. DISCUSSION OF THE FACTORIZABLE CONDITION AT T = 0

The factorized initial condition assumption in Eq. S1 requires some further discussion. Does

it hold for excitonic systems? At t = −∞, we can safely assume that ρtotal(t = −∞) =

|g〉〈g| ⊗ ρB,eq, where ρB,eq is an incoherent ensemble of phonons at thermal equilibrium, and

the system state is in the ground electronic state. However, this is not the initial state we are

concerned with for a QPT in the single exciton manifold. The state we shall worry about is

the one after two pulse perturbations.

First, consider the τ = 0 case (TB and TD experiments). The discussion in Sections III and

IV on overlapping pulses is particularly relevant for this situation. Denote [ρ
(2)
total,−k1,k2

]ω1,ω2
e1,e2

(t2 +

T ) the total second order density matrix corresponding to the perturbations at the −k1 and +k2

directions, such that its trace over the bath yields the object ρ̃ω1,ω2
e1,e2

(t2 + T ) de�ned in Eq. 9 in

the article. We are interested in the quasi-impulsive limit of the light-matter interaction, where

σ � 1
λ
, where σ is the duration of the pulses and λ is the characteristic reorganization energy

scale of the bath. As mentioned in the article, in accordance with the Franck-Condon principle,

we assume the electronic excitation occurs much faster than any nuclei rearrangement, and

[ρ
(2)
total,−k1,k2

]ω1,ω2
e1,e2

(t2 + T ) ≈ ρ̃ω1,ω2
e1,e2

(t2 + T )⊗ ρB,eq, so that Eq. S1 holds.

For τ > 0, the situation needs to be more carefully analyzed. If τ � 1
λ
, a similar scenario to

the one in the previous paragraph applies (the bath is not given enough time to evolve far away

from ρB,eq). Another useful case to consider is τ � 1
λ
, after which B relaxes to a stationary or

quasi-stationary state ρB,stat, which may or may not be equal to ρB,eq. In order to preserve the

factorizable condition, this state ρB,stat must be the same for every electronic population and

coherence of interest, so that [ρ
(2)
total,−k1,k2

]ω1,ω2
e1,e2

(t2 + T ) ≈ ρ̃ω1,ω2
e1,e2

(t2 + T ) ⊗ ρB,stat. The simplest

example of this situation is a Markovian bath, for which B relaxes to ρB,eq after a timescale on

the order of 1
λ
, which is short compared to the dynamics of the system.

For cases beyond the ones described here, factorizable initial conditions might not apply,

and a reexamination of QPT protocols for initially correlated states must be advocated [7�9].

We are currently pursuing this line of research.
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In conclusion, in order to get consistent results for QPT, TD/TB seem to be the most

promising experiments. The standard PE experiments with �nite τ provide a QPT if the bath

is su�ciently �well-behaved,� as described above.

IX. TRADING FREQUENCY CONTROL FOR TIME DELAY

Several properties of the pulses can be exploited to selectively manipulate the excitons.

These include frequencies [10], polarizations [11�13], and time delays [14�16]. In the article,

we have only exploited the former to make a transparent connection between a PE and a QPT

experiment. However, the case of polarizations and time delays has also been addressed in

our recent work [4]. In this section, we address the use of time delays to substitute frequency

control.

Eq. 14 in the article can be rewritten as:

[SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t) ∝
∑
p,q,r,s

Cp
ω1
Cq
ω2
Cr
ω3
Cs
ω4
Ggp(τ)Gsg(t)P p,q,r,s

e1,e2,e3,e4
(0, T, 0), (S32)

For simplicity, we have made the approximations: Gfα(t) ≈ Gβg(t) and Gfβ(t) ≈ Gαg(t). Notice

that in Eq. S32, the frequency ωpg appears both in the coherence time propagator Ggp(τ) as

well as in the frequency amplitude of the �rst transition Cp
ω1
. A similar observation follows for

ωsg in the echo time in Gsg(t) and Cs
ω4
. The frequency redundancy in the propagators and the

transition amplitudes is the key to understand trading of frequency control for time delays.

Upon the collection of the signal along many values of τ and t for a �xed T , a double

one-sided Fourier transformation yields the 2D-ES [4]:

S(ωτ , T, ωt) =

ˆ ∞
0

dτe−iωτ τ
ˆ ∞

0

dteiωtt[SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t) (S33)

∝
∑

p,s=α,β

lτ,p(ωτ )lt,s(ωt)Sps(T ) (S34)

The spectrum consists of a sum of four resonances at (ωτ , ωt) ∈

{(ωαg, ωαg), (ωαg, ωβg), (ωβg, ωαg), (ωβg, ωβg)}, which correspond to the frequencies of the

optical coherences at the coherence and echo times. These resonances are modulated by

lineshape functions of the form,

lτ,p(ωτ ) =
1

i(ωτ − ωpg − iΓpg)
, (S35)

lt,s(ωt) =
1

i(−ωt + ωsg − iΓsg)
, (S36)

and the amplitude of each peak is given by

Sps(T ) =
∑
q,r

Cp
ω1
Cq
ω2
Cr
ω3
Cs
ω4
P p,q,r,s

e1,e2,e3,e4
(0, T, 0) (S37)
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In our original example for QPT, we considered sixteen possible four-pulse-combination

experiments, which can isolate each of the P p,q,r,s
e1,e2,e3,e4

(τ, T, t) terms for p, q, r, s ∈ {α, β} for a

�xed polarization setting (e1, e2, e3, e4), which in turn yield enough information to invert the

elements of χ(T ). The pulses were assumed to be chosen from the toolbox in Eq. 13 in the

article. The same sixteen experiments can be extended to the 2D-ES domain by collecting data

from many τ and t values, so that P p,q,r,s
e1,e2,e3,e4

(0, T, 0) ∝ P p,q,r,s
e1,e2,e3,e4

(τ, T, t) can be extracted

from Eq. S37, provided that the amplitudes Sps(T ) can be obtained through a �tting procedure

of the 2D-ES to a sum of the four lineshapes. However, we can get away with many fewer

experiments. The amplitude Sps(T ) only contains information of the Feynman diagrams where

the �rst pulse is centered about ωpg and the fourth pulse about ωsg. Frequency control over the

�rst and the fourth pulses is redundant, as it will yield 2D-spectra with only one peak at a time.

This is unnecessary as each of the four peak amplitudes can be determined independently via a

�tting procedure. Instead, a waveform that excites both |α〉 and |β〉 with the same amplitude

(e.g., a pulse with carrier frequency in between the excitons, ω̄ =
ωα+ωβ

2
, and the same σ as

before, or shorter) for these two perturbations will, in general, expose the four resonances in

a single 2D-ES, so that Cp
ω1

= Cs
ω4

for all p, s. However, selective waveforms, such as the ones

described for the original QPT, must still be used for the second and third perturbations, as

Sps(T ) still contains a sum over q, r, which needs to be distilled.

The conclusion is that one can trade frequency control for time-delays for the �rst and fourth

pulses, but not for the second and third pulses. For this trade to work, it is essential that no

bath-induced coherence transfers occur during the coherence and echo times, so that we can

write an optical propagator like Eq. 11 in the article.

X. SECULAR REDFIELD MODEL FOR MARKOVIAN DISSIPATION

The free evolution of the system S and bath B is generated by the total Hamiltonian

Htotal =HS +HB +HSB (S38)

where HS, HB, and HSB are the Hamiltonian for S, B, and the interaction between S and

B, respectively. We model the bath as being constituted by two independent and identically
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distributed Ohmic bosonic baths, each linearly coupled to a site of the dimer.

HB =
∑
i=α,β

∑
x

ωx,i

(
b+
x,ibx,i +

1

2

)
HSB = Fα|α〉〈α|+ Fβ|β〉〈β|+ (Fα + Fβ)|f〉〈f |

Fi =
∑
x

λx,i(bx,i + b+
x,i) (S39)

where bx,i, b
+
x,i are the anhilation and creation operators of the bath mode x coupled to the site

i with frequency ωx,i, λx,i is a coupling strength, and the spectral density is the same for both

sites:

Ji(ω) =
∑
x

ω2
x,iλ

2
x,iδ(ω − ωx)

=
λ

ωc
ωe−ω/ωc . (S40)

We take ωc = 120 cm−1 and λ = 30 cm−1, which are typical energy scales for biomolecular

chromophores. By applying second-order perturbation theory on HSB, tracing over the degrees

of freedom of B, and invoking the Markov and secular approximations, one can arrive at the

Red�eld equation [17],

ρ̇(T ) = −i[HS, ρ(T )]−Rρ(T ), (S41)

The Red�eld tensor R [18] for T = 273 K is shown in Table S1. Table S2 shows the explicit

expressions of χ(T ) in terms of R.

TABLE S1. Values (in ps−1) of non-zero rates of the (secular) Red�eld tensor at T = 273 K

Rββαα 2.15

Rααββ = e−ωαβ/kBTRββαα 0.467

Rαβαβ = Rβαβα 6.91

Rαgαg = Rgαgα = Rfαfα = Rαfαf 6.95

Rβgβg = Rgβgβ = Rfβfβ = Rβfβf 6.11

Rfgfg = Rgfgf 17.9

TABLE S2. Analytical expressions for the nonzero elements of χ(T ) involving single-exciton states

χαααα(T ) e−RββααT

χββαα(T ) 1− e−RββααT

χββββ(T ) e−RααββT

χααββ(T ) 1− e−RααββT

χαβαβ(T ) = (χβαβα(T ))∗ e−iωαβT e−RαβαβT
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XI. RECONSTRUCTION OF χ(T )

We divide the numerical reconstruction of χ(T ) into two steps.

A. Reconstruction of the values 〈P p,q,r,sz,z,z,z(τ, T, t)〉iso from the signals

〈[SPE ]ω1,ω2,ω3,ω4
z,z,z,z (τ, T, t)〉iso

Eq. (14) in the article can be arranged into a matrix equation,

SPE(τ, T, t) ∝ CP (τ, T, t) (S42)

where SPE is a vector of the sixteen measured signals 〈[SPE]ω1,ω2,ω3,ω4
z,,e3,e4

(τ, T, t)〉iso, P (τ, T, t) is

the vector consisting of the sixteen values 〈P p,q,r,s
e1,e2,e3,e4

(τ, T, t)〉iso which are to be extracted, and

C is a matrix of known pulse related coe�cients Cp
ω1
Cq
ω2
Cr
ω3
Cs
ω4
. An important issue to address

is the stability of the inversion of P (τ, T, t) subject to errors in SPE(τ, T, t) upon changes in

the ratio C2/C1 (see Eq. 13 in the article). Denote the spectral norm of a vector or a matrix

with ‖ · ‖. We can bound the errors in the numerically extracted P from Eq. S42 in terms of

the errors in the signal SPE [19],

||∆P ||
||P ||

≤ κC
‖ ∆SPE ‖
‖ SPE ‖

, (S43)

where ∆P and ∆SPE are errors in P and SPE, respectively. The condition number κC is given

by

κC =‖ C(T ) ‖‖ [C(T )]−1 ‖, (S44)

yields a measure of the ampli�cation of the relative errors on the inverted vector due to the

relative errors in the experimental data. The lowest possible value for a condition number is 1.

When both waveforms of the toolbox excite |α〉 and |β〉 with the same amplitude (C ′/C” = 1),

there is no selectivity in the preparation and detection of states in the energy domain, and

κC =∞, yielding the worst scenario for reconstruction. The best scenario occurs for the MDC

case (C ′/C”→∞), where C is proportional to the identity matrix, and κC = 1.

Not surprisingly, κC decreases monotonically over the C ′/C” ∈ [1,∞] range. Fig. S1 shows

κC with respect to C ′/C”. The small values of κC imply a robust numerical extraction of

P (τ, T, t) over a wide range of obtainable C ′/C”.

B. Reconstruction of χ(T ) from 〈P p,q,r,sz,z,z,z(τ, T, t)〉iso
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Figure S2: Plot of κC vs. C/C”. The function decreases monotonically over C ′/C” ∈ [1,∞], as

expected, with C ′/C” = 1 being the worst scenario of reconstruction corresponding to the case of

equal pulse amplitude at both excitonic energies ωαg and ωβg, and C
′/C” =∞ being the best scenario

corresponding to the MDC.
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Table S3. A set of experiments which yields χ(T )

From the data we can reconstruct the elements which explicitly listed are

〈Pα,α,α,α
z,z,z,z (τ, T, t)〉iso,

〈Pα,α,α,β
z,z,z,z (τ, T, t)〉iso,

〈Pα,α,β.β
z,z,z,z (τ, T, t)〉iso,

〈Pα,α,β,α
z,z,z,z (τ, T, t)〉iso


{χijαα(T )}



χαααα(T ),

χββαα(T ),

<{χαβαα(T )} = <{χβααα(T )},

={χαβαα(T )} = −={χβααα(T )}



〈P β,β,α,α
z,z,z,z (τ, T, t)〉iso,

〈P β,β,α,β
z,z,z,z (τ, T, t)〉iso,

〈P β,β,ββ
z,z,z,z (τ, T, t)〉iso,

〈P β,β,α,β
z,z,z,z (τ, T, t)〉iso


{χijββ(T )}



χααββ(T ),

χββββ(T ),

<{χαβββ(T )} = <{χβαββ(T )},

={χαβββ(T )} = −={χβαββ(T )}



〈P β,α,α,α
z,z,z,z (τ, T, t)〉iso,

〈P β,α,α,β
z,z,z,z (τ, T, t)〉iso,

〈P β,α,β,β
z,x,x,z (τ, T, t)〉iso,

〈P β,α,β,α
z,x,x,z (τ, T, t)〉iso,

〈Pα,β,α,α
z,z,z,z (τ, T, t)〉iso,

〈Pα,β,α,β
z,z,z,z (τ, T, t)〉iso,

〈Pα,β,β,β
z,z,z,z (τ, T, t)〉iso,

〈Pα,β,β,α
z,z,z,z (τ, T, t)〉iso



{χijαβ(T ) = (χjiβα(T ))∗}



<{χαααβ(T )} = <{χααβα(T )},

={χαααβ(T )} = −={χααβα(T )},

<{χββαβ(T )} = <{χβββα(T )},

={χββαβ(T )} = −={χβββα(T )},

<{χαβαβ(T )} = <{χβαβα(T )},

={χαβαβ(T )} = −={χβαβα(T )},

<{χβααβ(T )} = <{χαββα(T )},

={χαβαβ(T )} = −={χβαβα(T )}


Once the 〈P p,q,r,s

z,z,z,z(τ, T, t)〉iso values have been extracted, a second step to extract χ(T ) from

them is required. The explicit trace preservation identities,

χggαα(T )− 1 = −χαααα(T )− χββαα(T )),

χggββ(T )− 1 = −χααββ(T )− χββββ(T )),

<{χggαβ(T )} = −<{χαααβ(T )} − <{χββαβ(T )},

={χggαβ(T )} = −={χαααβ(T )} − ={χββαβ(T )}, (S45)

together with the Hermiticity identities in column 2 of Table S3, can be substituted into Eqs.

14-16 in the article, and their analogues upon the α↔ β substitution. After isotropic averaging,

we can write the matrix equations,

MqpXqp(T ) = P qp(T ), (S46)

each of them corresponding to an initial state qp. The analytical expressions of the square

matrices Mqp are listed in Tables S4, S5, and S6. The real vectors X to extract contain the
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elements of the process matrix,

Xαα(T ) =


χαααα(T )

χββαα(T )

<{χαβαα(T )}

={χαβαα(T )}

 ,

Xββ(T ) =


χααββ(T )

χββββ(T )

<{χαβββ(T )}

={χαβββ(T )}

 ,

Xαβ(T ) =



<{χαααβ(T )}

<{χββαβ(T )}

<{χαβαβ(T )}

<{χβααβ(T )}

={χαααβ(T )}

={χββαβ(T )}

={χαβαβ(T )}

={χβααβ(T )}



, (S47)

whereas the vectors consisting of data from experiments are

Pαα(T ) =


〈Pα,α,α,α

z,z,z,z (0, T, 0)〉iso
〈Pα,α,α,β

z,z,z,z (0, T, 0)〉iso
〈Pα,α,β,α

z,z,z,z (0, T, 0)〉iso
〈Pα,α,β,β

z,z,z,z (0, T, 0)〉iso

 ,

P ββ(T ) =


〈P β,β,α,α

z,z,z,z (0, T, 0)〉iso
〈P β,β,α,β

z,z,z,z (0, T, 0)〉iso
〈P β,β,β,α

z,z,z,z (0, T, 0)〉iso
〈P β,β,β,β

z,z,z,z (0, T, 0)〉iso

 ,

Pαβ(T ) =



〈P β,α,α,α
z,z,z,z (0, T, 0)〉iso

〈P β,α,α,β
z,z,z,z (0, T, 0)〉iso

〈P β,α,β,α
z,z,z,z (0, T, 0)〉iso

〈P β,α,β,β
z,z,z,z (0, T, 0)〉iso

〈Pα,β,α,α
z,z,z,z (0, T, 0)〉iso

〈Pα,β,α,β
z,z,z,z (0, T, 0)〉iso

〈Pα,β,β,α
z,z,z,z (0, T, 0)〉iso

〈Pα,β,β,β
z,z,z,z (0, T, 0)〉iso



.
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Construction of the P qp(T ) vectors can be done from the values 〈P p,q,r,s
z,z,z,z(0, T, 0)〉iso stemming

from TD/TBmeasurements, or alternatively, after factoring the coherence and echo propagators

from the values 〈P p,q,r,s
z,z,z,z(τ, T, t)〉iso given by the general rephasing PE experiment, as in Eq. S32.

Table S4. Entries of Mαα

ROW COLUMN V ALUE

1 1
2µ4

αg

5

1 2
µ4
αg

5
− 1

15

(
cos

(
2θfβ

)
+ 2

)
µ2fβµ

2
αg

1 3 0

1 4 0

2 1 0

2 2 0

2 3 1
15
µ2αg

(
3 cos

(
θβg

)
µαgµβg −

(
3 cos (θfα) cos

(
θfβ

)
+ sin (θfα) sin

(
θfβ

))
µfαµfβ

)
2 4 1

15
iµ2αg

((
3 cos (θfα) cos

(
θfβ

)
+ sin (θfα) sin

(
θfβ

))
µfαµfβ − 3 cos

(
θβg

)
µαgµβg

)
3 1 0

3 2 0

3 3 1
15
µ2αg

(
3 cos

(
θβg

)
µαgµβg −

(
3 cos (θfα) cos

(
θfβ

)
+ sin (θfα) sin

(
θfβ

))
µfαµfβ

)
3 4 − 1

15
iµ2αg

((
3 cos (θfα) cos

(
θfβ

)
+ sin (θfα) sin

(
θfβ

))
µfαµfβ − 3 cos

(
θβg

)
µαgµβg

)
4 1 1

15
µ2αg

((
cos

(
2θβg

)
+ 2

)
µ2βg − (cos (2θfα) + 2)µ2fα

)
4 2 2

15

(
cos

(
2θβg

)
+ 2

)
µ2αgµ

2
βg

4 3 0

4 4 0

Table S5. Entries of Mββ

ROW COLUMN V ALUE

1 1 2
15

(
cos

(
2θβg

)
+ 2

)
µ2αgµ

2
βg

1 2 1
15

((
cos

(
2θβg

)
+ 2

)
µ2αg −

(
cos

(
2
(
θfβ − θβg

))
+ 2

)
µ2fβ

)
µ2βg

1 3 0

1 4 0

2 1 0

2 2 0

2 3 1
15
µ2βg

(
3 cos

(
θβg

)
µαgµβg −

(
2 cos

(
θfα − θfβ

)
+ cos

(
θfα + θfβ − 2θβg

))
µfαµfβ

)
2 4 1

15
iµ2βg

((
2 cos

(
θfα − θfβ

)
+ cos

(
θfα + θfβ − 2θβg

))
µfαµfβ − 3 cos

(
θβg

)
µαgµβg

)
3 1 0

3 2 0

3 3 1
15
µ2βg

(
3 cos

(
θβg

)
µαgµβg −

(
2 cos

(
θfα − θfβ

)
+ cos

(
θfα + θfβ − 2θβg

))
µfαµfβ

)
3 4 1

15
iµ2βg

(
3 cos

(
θβg

)
µαgµβg −

(
2 cos

(
θfα − θfβ

)
+ cos

(
θfα + θfβ − 2θβg

))
µfαµfβ

)
4 1 1

15
µ2βg

(
3µ2βg −

(
cos

(
2
(
θfα − θβg

))
+ 2

)
µ2fα

)
4 2

2µ4
βg

5

4 3 0

4 4 0

22



Table S6. Entries of Mαβ

ROW COLUMN V ALUE

1 1 2
5

cos
(
θβg

)
µ3αgµβg

1 2 1
15
µαg

(
3 cos

(
θβg

)
µ2αg −

(
cos

(
2θfβ − θβg

)
+ 2 cos

(
θβg

))
µ2fβ

)
µβg

1 3 0

1 4 0

1 5 2
5
i cos

(
θβg

)
µ3αgµβg

1 6 − 1
15
iµαg

((
cos

(
2θfβ − θβg

)
+ 2 cos

(
θβg

))
µ2fβ − 3 cos

(
θβg

)
µ2αg

)
µβg

1 7 0

1 8 0

2 1 0

2 2 0

2 3 0

2 4 1
15
µαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
2 5 0

2 6 0

2 7 0

2 8 1
15
iµαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
3 1 0

3 2 0

3 3 1
15
µαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
3 4 0

3 5 0

3 6 0

3 7 1
15
iµαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
3 8 0

4 1 1
15
µαgµβg

(
3 cos

(
θβg

)
µ2βg −

(
cos

(
2θfα − θβg

)
+ 2 cos

(
θβg

))
µ2fα

)
4 2 2

5
cos

(
θβg

)
µαgµ3βg

4 3 0

4 4 0

4 5 − 1
15
iµαgµβg

((
cos

(
2θfα − θβg

)
+ 2 cos

(
θβg

))
µ2fα − 3 cos

(
θβg

)
µ2βg

)
4 6 2

5
i cos

(
θβg

)
µαgµ3βg

4 7 0

4 8 0
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Table S6 (continued). Entries of Mαβ

ROW COLUMN V ALUE

5 1 2
5

cos
(
θβg

)
µ3αgµβg

5 2 1
15
µαg

(
3 cos

(
θβg

)
µ2αg −

(
cos

(
2θfβ − θβg

)
+ 2 cos

(
θβg

))
µ2fβ

)
µβg

5 3 0

5 4 0

5 5 − 2
5
i cos

(
θβg

)
µ3αgµβg

5 6 1
15
iµαg

((
cos

(
2θfβ − θβg

)
+ 2 cos

(
θβg

))
µ2fβ − 3 cos

(
θβg

)
µ2αg

)
µβg

5 7 0

5 8 0

6 1 0

6 2 0

6 3 1
15
µαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
6 4 0

6 5 0

6 6 0

6 7 1
15
iµαgµβg

((
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ −

(
cos

(
2θβg

)
+ 2

)
µαgµβg

)
6 8 0

7 1 0

7 2 0

7 3 0

7 4 1
15
µαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
7 5 0

7 6 0

7 7 0

7 8 1
15
iµαgµβg

((
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ −

(
cos

(
2θβg

)
+ 2

)
µαgµβg

)
8 1 1

15
µαgµβg

(
3 cos

(
θβg

)
µ2βg −

(
cos

(
2θfα − θβg

)
+ 2 cos

(
θβg

))
µ2fα

)
8 2 2

5
cos

(
θβg

)
µαgµ3βg

8 3 0

8 4 0

8 5 1
15
iµαgµβg

((
cos

(
2θfα − θβg

)
+ 2 cos

(
θβg

))
µ2fα − 3 cos

(
θβg

)
µ2βg

)
8 6 − 2

5
i cos

(
θβg

)
µαgµ3βg

8 7 0

8 8 0

The matrices Mqp can be easily reexpressed in terms of dA, dB, φ, and θ using the equations

in section I. As in subsection A, we obtain a bound on the relative error of Xqp(T ) [19, 20]:

||∆Xqp(T )||
||Xqp(T )||

≤ κqp
‖ ∆P qp(T ) ‖
‖ P qp(T ) ‖

. (S48)

The condition number κqp is given by,

κqp =‖Mqp ‖‖ [Mqp]−1 ‖ . (S49)

Fig. S2 shows contour plots of κ ≡ maxqp κ for a set of �xed dipole norm ratios dB/dA across

the entire range of angles 0 ≤ θ, φ < π. For dB/dA = 1 (panel (a)), there are four stripes

for which the QPT protocol fails. The stripes along θ = 0, π
2
correspond to the absence of

excitonic coupling (J = 0), whereas the ones along θ = π
4
, 3π

4
correspond to the homodimer
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Figure S3: Contour plots of κ vs. θ and φ. The stripes about θ = 0, π2 correspond to the case of

uncoupled chromophores, and fail to provide a QPT via our suggested protocol. Additional unstable

regions emerge about θ = π
4 ,

3π
4 for dB/dA = 1 (panel (a)), which correspond to the homodimer case.

The θ = π case is equivalent to the θ = 0 case. Note that beyond the unstable regions, QPT is very

robust, with condition number κ values on the order of 1 to 10.

case. As explained in Ref. [4], isotropic averages of signal denoting coherence to population or

opposite processes vanish for a homodimer. Therefore, QPT is incomplete in those cases and

large condition numbers arise near those critical angles. QPT is, however, quite robust in the

wide range of structural parameters which do not lie in the critical stripes, with κ values on

the order of 1 to 10. For dB/dA = 1.5, 10, 100 (panels (b), (c) and (d)), there is no possibility

of homodimer, and in fact, the inversion only fails for the uncoupled chromophores situation.

In general, the κ dependence on θ, φ is seen to be largely insensitive to the ratio dB/dA 6= 1.

This phenomenon can be easily understood as follows: as long as there is coupling between

the site excitons, the oscillator strength is fairly distributed between the two eigenstates of the

single-exciton manifold even if their site oscillator strengths di�er by many orders of magnitude.

Remarkably, the protocol does not fail for the φ = 0, π cases, when the site dipoles are

aligned or antialigned, except when dB/dA = 1. For the latter, it happens that µαg = µfα and

µβg = µfβ, yielding singular matrices Mqp. For these particular φ values and general dB/dA

ratios, the four parallel transition dipoles have di�erent magnitude but the same direction.

Since the currently proposed spectroscopic addressing of the states is through frequency space

rather than through polarization, these degeneracies are unimportant.
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C. Choosing sixteen measurements out of the thirty-two heterodyne de-

tections

Table S3 explicitly lists all 16 elements of χ(T ) which are extracted from the QPT protocol.

As mentioned above, there are 24 − 22 = 12 independent real-valued parameters associated

to the dynamics in the single exciton manifold, but we also keep track of four leakage errors

χggαα(T ), χggββ(T ), and <{χggαβ(T )} and ={χggαβ(T )}, yielding a total of sixteen parameters

to extract. The terms associated with these transfers to the ground state are not listed, as they

can be expressed in terms of the rest of the elements using Eq. (3) in the article. The sixteen

experiments described in the article involve thirty-two heterodyne real valued measurements,

twice as many as parameters to extract. Clearly, there must be a way to select only sixteen

measurements out of the thirty-two. We now show that this reduction is feasible and has similar

stability properties as the original set. It is important to emphasize that the thirty-two or

sixteen required heterodyne detections are one-dimensional (1D) measurements, as the signals

〈[SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t)〉iso stemming from a single pair of τ, t values su�ce for the purposes of

performing a QPT.

We �rst make some observations which are easily generalizable. Altogether, the four

terms <{〈Pα,α,α,α
e1,e2,e3,e4

(τ, T, t)〉iso}, ={〈Pα,α,α,α
e1,e2,e3,e4

(τ, T, t)〉iso}, <{〈Pα,α,β,β
e1,e2,e3,e4

(τ, T, t)〉iso}, and

={〈Pα,α,β,β
e1,e2,e3,e4

(τ, T, t)〉iso} contain information about the real valued population transfer

terms χαααα(T ) and χββαα(T ). Consider the case where Ggp(τ)Gps(t) ∈ < (for exam-

ple, taking τ and t to satisfy ωgpτ = ωpst = 2π). Then, only <{〈Pα,α,α,α
e1,e2,e3,e4

(τ, T, t)〉iso}

and <{〈Pα,α,β,β
e1,e2,e3,e4

(τ, T, t)〉iso} need to be monitored, as ={〈Pα,α,α,α
e1,e2,e3,e4

(τ, T, t)〉iso} and

={〈Pα,α,β,β
e1,e2,e3,e4

(τ, T, t)〉iso} will, in principle, vanish. Conversely, if Ggp(τ)Gps(t) ∈ = (say, by

taking ωgpτ = π
2
and ωpst = 2π), only the imaginary parts need to be monitored. Finally,

if Ggp(τ)Gps(t) has both real and complex parts of similar proportions, either the real or the

imaginary parts su�ce. Naturally, depending on the ratio between the magnitudes of the real

and imaginary parts of Ggp(τ)Gps(t), it will be numerically more favorable to measure the real

or the imaginary parts of the signal.

Consider now the signals <{〈P β,α,β,α
z,z,z,z (τ, T, t)〉iso}, ={〈P β,α,β,α

z,z,z,z (τ, T, t)〉iso},

<{〈Pα,β,α,β
z,z,z,z (τ, T, t)〉iso}, and ={〈Pα,β,α,β

z,z,z,z (τ, T, t)〉iso}, which contain information about

<{χαβαβ(T )} and ={χαβαβ(T )}. By proceeding as in the previous paragraph, it can be seen

that either the �rst two or the last two are good enough to extract information about the

latter two quantities.

The steps above can repeated for the rest of the elements of χ(T ) in order to select sixteen out

of the thirty-two measurements which yield the desired QPT. Table S7 presents an adaptation
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of Table S3, where, in the �rst column, we show a possible set of experiments which yields QPT

for the case of Ggp(τ)Gps(t) being purely real.

Table S7. A set of only sixteen measurements which yields χ(T ) for the case Ggp(τ)Gps(t) ∈ <

From the data we can invert the elements which explicitly listed are

<{〈Pα,α,α,α
z,z,z,z (τ, T, t)〉iso},

<{〈Pα,α,α,β
z,z,z,z (τ, T, t)〉iso},

={〈Pα,α,α,β
z,z,z,z (τ, T, t)〉iso},

<{〈Pα,α,β,β
z,z,z,z (τ, T, t)〉iso}


{χijαα(T )}



χαααα(T ),

χββαα(T ),

<{χαβαα(T )} = <{χβααα(T )},

={χαβαα(T )} = −={χβααα(T )}



<{〈P β,β,α,α
z,z,z,z (τ, T, t)〉iso},

<{〈P β,β,α,β
z,z,z,z (τ, T, t)〉iso},

={〈P β,β,α,β
z,z,z,z (τ, T, t)〉iso},

<{〈P β,β,β,β
z,z,z,z (τ, T, t)〉iso}


{χijββ(T )}



χααββ(T ),

χββββ(T ),

<{χαβββ(T )} = <{χβαββ(T )},

={χαβββ(T )} = −={χβαββ(T )}



<{〈P β,α,α,α
z,z,z,z (τ, T, t)〉iso},

={〈P β,α,α,α
z,z,z,z (τ, T, t)〉iso},

<{〈P β,α,α,β
z,z,z,z (τ, T, t)〉iso},

={〈P β,α,α,β
z,z,z,z (τ, T, t)〉iso},

<{〈P β,α,β,β
z,z,z,z (τ, T, t)〉iso},

={〈P β,α,β,β
z,z,z,z (τ, T, t)〉iso},

<{〈P β,α,β,α
z,z,z,z (τ, T, t)〉iso},

={〈P β,α,β,α
z,z,z,z (τ, T, t)〉iso}



{χijαβ(T ) = (χjiβα(T ))∗}



<{χαααβ(T )} = <{χααβα(T )},

={χαααβ(T )} = −={χααβα(T )},

<{χββαβ(T )} = <{χβββα(T )},

={χββαβ(T )} = −={χβββα(T )},

<{χαβαβ(T )} = <{χβαβα(T )},

={χαβαβ(T )} = −={χβαβα(T )},

<{χβααβ(T )} = <{χαββα(T )},

={χαβαβ(T )} = −={χβαβα(T )}


The same calculation of Fig. S2 can be repeated for this setting, where Mqp and P qp(T ) only

contain the elements in the �rst column of Table S7. We do not show them because they have

the same coarse appearance as the ones in Fig. S2. We make a numerical comparison between

the matrices of κ values calculated in the previous subsection and the ones computed with the

selective measurements of Table S7, where we round large values of κ down to be 100. We �nd

relative di�erences in their 2-norms of 0.094, 0.12, 0.0023, and 0.0028 for the dB/dA =1, 1.5,

10, 150 cases, respectively, supporting the qualitative claim that the two protocols are similar

in terms of stability.

XII. SCALABILITY

The QPT protocol can be extended to general aggregates of d chromophores using a pulse

toolbox of d di�erent waveforms (the single exciton Hilbert space is size d). Details will be

provided in a future publication. For now, let us make a comparison between the number of
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1D measurements required for a multichromophoric QPT and the e�ort involved in collecting

a standard 2D-ES [26]On the one hand, without keeping track of leakage errors, the number of

required QPT 1D experiments is equal to the number of parameters to extract, d4−d2. On the

other hand, the number of grid points in a single 2D-ES, which we take as the e�ective number

of experiments, is on the order of 7000 [21]. Therefore, within this crude measure, it is only

for d > 10 that a QPT becomes more costly than a single 2D-ES [27] . Clearly, the scalability

of QPT as O(d4) is not favorable asymptotically, although ideas associated with single shot

setups [22] or compressed sensing [23, 24] could provide signi�cant reductions in the required

physical resources. However, this limit might not even be relevant at present. So far, the largest

multichromophoric system for which spectral lineshapes can be resolved in a 2D-ES consists of

the lowest lying states of the Light Harvesting Complex-II [25], corresponding to d = 14, giving

144 − 142 = 38220 1D experiments, which amounts to an e�ort of collecting about six 2D-ES.
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