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A witness for coherent electronic vs vibronic-only oscillations
in ultrafast spectroscopy
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We report a conceptually straightforward witness that distinguishes coherent electronic oscillations
from their vibronic-only counterparts in nonlinear optical spectra of molecular aggregates. Coherent
oscillations as a function of waiting time in broadband pump/broadband probe spectra correspond to
coherent electronic oscillations in the singly excited manifold. Oscillations in individual peaks of 2D
electronic spectra do not necessarily yield this conclusion. Our witness is simpler to implement than
quantum process tomography and potentially resolves a long-standing controversy on the character of
oscillations in ultrafast spectra of photosynthetic light harvesting systems. © 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4725498]

I. INTRODUCTION

Recently, there has been considerable interest in
long-lived quantum superpositions of electronic states in
photosynthetic molecular aggregates and their potential
role in efficient energy transport in biological conditions.1–7

Evidence for such electronic coherences stems from time
oscillations in peaks of two-dimensional electronic spec-
tra (2D-ES), which persist for over 600 fs.8–11 However,
coherences between vibronic levels involving a single
electronic state (and hence, without coherence between
excited electronic states) exhibit similar signatures in 2D-ES
(Refs. 12–15 and 61) and have been shown to nontrivially
affect energy transfer too.16–25 Although there is additional
evidence to support the interpretation that the oscillations
are due to electronic states (beating frequencies and com-
parison with all-atom simulations8, 26), unambiguous tools
to experimentally unravel the nature of these oscillations
are required. A big step has been the observation that,
under weak coupling to vibrations and negligible coherence
transfer processes, electronic coherences imply oscillations
in off-diagonal peaks of rephasing 2D-ES and in diagonal
peaks of their non-rephasing counterparts,27 whereas general
vibronic coherences show up as oscillations in any region
of either spectra.28 Another important proposal to address
the problem in this regime has been recently suggested in
Ref. 62. However, the rephasing 2D-ES of the paradigmatic
Fenna-Matthews-Olson (FMO) complex exhibits oscillations
in both diagonal and off-diagonal peaks, indicating that
systems of interest may lie in the regime of strong cou-
pling to vibrations29 or exhibit vibronic coherences only.15

Techniques of wavepacket reconstruction16, 30–32 or quantum
process tomography (QPT) (Refs. 33–35) should clearly
provide an answer at a cost of several experiments. Our
purpose here is to provide a practical witness for coherent
electronic oscillations, which is applicable across different
regimes of weak and strong coupling to vibrations.

a)Electronic mail: aspuru@chemistry.harvard.edu.

We illustrate the witness by considering the sim-
plest molecular exciton model, the coupled dimer.36 Its
Hamiltonian is given by H0(R) = TN + Hel(R), where
TN is the nuclear kinetic energy, and Hel(R) is the elec-
tronic Hamiltonian which depends on the nuclei R, Hel(R)
=

∑
mn Vmn(R)|mn〉〈mn| + J (R)(|10〉〈01| + |01〉〈10|) . |mn〉

denotes the electronic state with m, n excitations in the first,
second molecules, respectively (m, n ∈ {0, 1}), Vmn(R) is the
corresponding diabatic potential energy surface, and J (R)
is the coupling between site excitations. We also introduce
the convenient notation |g〉 = |00〉 and |f〉 = |11〉. Any pure
state |!〉 may be expressed in terms of vibronic states, that
is, product states of the electronic (system) and nuclear (bath)
degrees of freedom, |!〉 =

∑
iai|ei〉|Ni〉, for coefficients ai,

and {|ei〉}, {|Ni〉} electronic and nuclear bases. A reduced
electronic description of |!〉 is obtained by performing a
trace over the bath, ρel = Trnuc(|!〉〈!|).

We consider a pump-probe experiment in which
two non-collinear pulses interact with the sample, sep-
arated by waiting time T. The transmission of the
probe pulse is measured, giving the pump-probe spec-
trum SPP ′ (T ). We treat the laser pulses as perturbations
in the dipole approximation, Hpert (s) = −µ · ε(s), where
µ =

∑
e=01,10

(
µeg|e〉〈g| + µf e|f 〉〈e|

)
+ h.c. is the dipole

operator, and ε(s) =
∑

p=P,P ′ [εp(s − tp)ep + c.c.] are the
electric fields of the pump (P) and probe (P′) pulses, with
εp(s) = λ√

2πσ 2
e−iωpse−s2/2σ 2

the Gaussian time-profile. Here,
λ, ωp, tp, σ , and ep, are the strength, carrier frequency, center
time, width, and polarization of the pth pulse, respectively.
We use the Franck-Condon (FC) approximation, whereby
the transition dipoles between electronic states (µeg and
µf e) are constant with respect to nuclear coordinates.37 The
waiting time is T = tP ′ − tP , and throughout this article we
set tP = 0, tP ′ = T . SPP ′ (T ) can also be recovered from a 2D-
ES by integration along both frequency axes (Appendix A and
Refs. 39–41).

The main result of this article is: In the FC approx-
imation and the broadband limit (σ → 0), oscillations of
SPP ′ (T ) as a function of T correspond to coherent electronic
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oscillations. In this limit, SPP ′(T ) may be expressed solely
in terms of reduced electronic states ρel of the singly excited
manifold {|01〉, |10〉}, and oscillations cannot be due exclu-
sively to nuclear dynamics.

The PP′ signal can, in general, be written as

SPP ′ (T ) = SSE(T ) + SESA(T ) + SGSB(T ), (1)

with separate contributions from stimulated emission (SE),
excited state absorption (ESA), and ground state bleach
(GSB) (Ref. 41). If the initial vibrational state is known, each
of these terms may be expressed as a suitable wavefunction
overlap. For example, let the initial wavefunction (before any
pulse) be |!0(0)〉 = |g〉|ν(g)

i 〉, where |ν(η)
i 〉 is a vibrational

eigenstate of Hvib,η(R) ≡ TN + Vη(R). Treating the laser
pulses perturbatively, the first order wavefunction due to P
is (¯ = 1) |!P (s)〉 = i

∫ ∞
−∞ ds ′e−iH0(s−s ′){µ · eP (εP (s ′)

+ c.c.)}|!0(s ′)〉, and the second order wavefunction
due to both P and P′ is |!PP ′(s)〉 = i

∫ ∞
−∞ ds ′e−iH0(s−s ′)

{µ · eP ′ (εP ′(s ′ − tP ′) + c.c.)}|!P (s ′)〉. It can be shown that
each term in the signal SPP ′ (T ) may be written in terms of
wavepacket overlaps (Appendix A and Refs. 37 and 42). In
particular, we will focus our discussion on

SSE(T ) = 2〈!PP ′ (s)|g〉〈g|!PP ′(s)〉, (2)

which gives the intuitive understanding that the number of
photons gained by the probe P′ due to the action of the pump
P is proportional to the norm of the wavepacket “dumped”
into |g〉.

II. PRELIMINARY EXAMPLE

We will develop some intuition through an illustration,
in which we focus on SSE(T). Consider the case where
the potential energy surfaces of the singly excited dia-
batic states have the same shape, V10(R) = V01(R) + c, for
some constant c (but in general Vg(R), Vf (R) *= Ve(R) + c

for e = 01, 10), and J (R) = J (0) for all R. It is conve-
nient to introduce the excitonic basis {|g〉, |α〉, |β〉, |f〉},
which diagonalizes the electronic Hamiltonian at the ground
state nuclear configuration: Hel(0) = ωg|g〉〈g| + ωα|α〉〈α|
+ ωβ |β〉〈β| + ωf |f 〉〈f |. Here, |g〉 = |00〉 and |f〉 = |11〉,
but in general, |α〉 and |β〉 differ from |01〉 and |10〉 in that
they are delocalized due to J. Note that in this example both
|α〉 and |β〉 are coupled in the same way to the vibrational
bath, and hence they form a decoherence-free subspace.43 The
first order wavefunction “right before” P′ may be expanded
as |!P (T )〉 =

∑
i=α,β

∑
m ci,m(T )|i〉|ν(i)

m 〉. Since in this case,
|i〉|ν(i)

m 〉 are eigenstates of the molecular Hamiltonian H0, the
excitons are the adiabatic electronic states, there is no dissi-
pation in the electronic system, and the values |ci, m(T)|2 are
constants as a function of T, depending only on the details
of P.57 The perturbative ground-state wavepacket “right after”
the probe at time T is, in the FC approximation, given by

〈g|!PP ′(T )〉 = i
∑

i=α,β
mn

µmg · eP ′ ε̃P ′ (ωim,gn)

×
〈
ν(g)

n

∣∣ν(i)
m

〉
ci,m(T )

∣∣ν(g)
n

〉
, (3)

where ε̃p(ω) = λe−(ω−ωp)2σ 2/2 is the Fourier transform of
pulse p at frequency ω, ωim, gn is the energy difference be-
tween |i〉|ν(i)

m 〉 and |j 〉|ν(g)
n 〉, and we consider only the portion

of !PP ′ in the ground state; see Eq. (A5) for the full expres-
sion. This expression can be interpreted as a wavepacket in
the ground state created when the probe couples the vibra-
tional levels of the singly excited states to the vibrational lev-
els of the ground state via the electric dipole moment, where
the amplitudes in the various vibrational levels depends on the
probe’s electric field at the given transition energy and the FC
overlap. Computing the norm of the resulting wavepacket,

SSE(T ) = 2
∑

ij=α,β
(µig · eP ′)(µjg · eP ′ )

×
∑

mm′n

〈
ν

(j )
m′

∣∣ν(g)
n

〉〈
ν(g)

n |ν(i)
m

〉

×ε̃P ′(ωim,gn)ε̃∗
P ′(ωjm′,gn)ci,m(T )c∗

j,m′ (T ), (4)

which corresponds to sums of interferences between vibra-
tional states of the same and different excitonic states, respec-
tively, projecting onto the same vibrational state in the ground
state.

Note that SSE(T) can be written as a linear com-
bination of elements of a full vibronic density ma-
trix ρ(T) = |!P(T)〉〈!P(T)|. The terms 〈i, m|ρ(T )|j,m′〉
= cim(T )c∗

jm′ (T ) for (i, m) *= (j, m′) correspond to vibronic
coherences and oscillate at the difference frequency between
|i〉|m〉 and the |j〉|m′〉, ωim,jm′ . When we consider the broad-
band (bb) limit of Eq. (4), ε̃(ω) = λ for all the ω values of
interest, and

Sbb
SE(T ) = 2λ2

∑

ij=α,β
m

(µig ·eP ′)(µjg ·eP ′)cim(T )c∗
jm(T ). (5)

Crucially, Eq. (5) is a linear combination of elements
of ρel(T) = Trnuc(|!P(T)〉〈!P(T)|, as opposed to the full vi-
bronic space. The i = j terms of Eq. (5) correspond to elec-
tronic populations and, due to the absence of relaxation to
the ground state in this example, stay constant with respect to
T. The term with i = α, j = β is proportional to 〈α|ρel(T )|β〉
=

∑
m cα,m(T )c∗

β,m(T ), so corresponds to an electronic coher-
ence between |α〉 and |β〉, and shows oscillations at the single
frequency ωαβ as a function of T. Hence, coherent oscillations
in Sbb

SE(T ) are a witness for coherent electronic dynamics. Re-
markably, in the additional limit where one of the excitons is
dark (e.g., µβg = 0), we effectively have a monomer instead
of a dimer, and Sbb

SE(T ) is a constant even in the case of large
FC displacements, where there is large vibrational motion be-
tween pump and probe. This observation for the monomer has
been previously reported by Yan and Mukamel44 and recently
confirmed by Mancal and coworkers.63

The results above illustrate the main point of the paper,
which is summarized in Figure 1 and can be interpreted as
follows. In the FC approximation, the probe couples only to
the electronic dipole, so in the broadband limit it acts uni-
formly across every transition energy, and hence across ev-
ery nuclear configuration within a particular electronic state.
In general, SSE(T) is a sum of multiple interferences among
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FIG. 1. Illustration of broadband pump-probe spectra as a witness for co-
herent electronic oscillations. (a) For a monomer with a single excited state,
in the broadband (bb) and Franck-Condon (FC) limits, the pump and probe
pulses move amplitude in and out of the excited state regardless of the
vibrational state; we observe this as leaving the shape of the vibrational
wavepacket unperturbed by the pulses. Thus, the stimulated emission signal
Sbb

SE (T ) is independent of the vibrational evolution during the waiting time T.
(b) For a dimer with two excited states |α〉, |β〉, even in the FC approximation
and bb limit, the two single-excitation states produce two distinct interfering
quantum pathways. The signal Sbb

SE(T ) then oscillates at the frequency ωαβ
as long as electronic coherence is maintained between |α〉 and |β〉.

portions of wavepackets at different electronic and nuclear
configurations. In Sbb

SE(T ), the probe opens only two inter-
ference pathways (just as in the double-slit experiment), via
emission from the |α〉 or the |β〉 state, insensitive to vibra-
tional dynamics, providing a witness for coherent electronic
oscillations. The 2D-ES does not always yield this conclusion
explicitly, as it includes additional information about optical
vibronic coherences between the ground and excited states in
the coherence and echo intervals, and therefore, is not a signal
that isolates singly excited manifold dynamics.

III. GENERAL CASE

The example above readily generalizes to include effects
of initial thermalized states of the bath, ESA and GSB contri-
butions, and non-adiabatic effects. In the limit of broadband P
(Appendix C) and P′, the contributions of Eq. (1) to Sbb

PP ′ (T )
are (Appendixes A and B),

Sbb
SE(T ) = 2λ4

∑

ijpq∈{|10〉,|01〉}
(µgi · eP ′ )(µqg · eP )

× (µgp · eP )(µjg · eP ′ )χijqp(T ), (6)

Sbb
ESA(T ) = −2λ4

∑

ijpq∈{|10〉,|01〉}
(µf i · eP ′)(µqg · eP )

× (µgp · eP )(µjf · eP ′ )χijqp(T ), (7)

Sbb
GSB(T ) = 2λ4

∑

ip∈{|10〉,|01〉}
(µgp · eP )(µpg · eP )

× (µgi · eP ′)(µig · eP ′), (8)

where the process matrix χ (T) is given by34, 35

χijqp(T ) = Trnuc{〈i|e−iH0T (|q〉〈p| ⊗ ρB(0)) eiH0T |j 〉}, (9)

and it is easy to see that Sbb
PP ′ (T ) is invariant under change

of electronic basis within the singly excited states. Here,
ρB(0) =

∑
n pn|ν(g)

n 〉〈ν(g)
n | is the initial thermal vibrational

ensemble in the ground electronic state. χ (T) describes the

evolution of the electronic system after P puts it into the singly
excited manifold, and it is the central object to reconstruct in
QPT (Ref. 35). If the initial state of the bath can be prepared
at ρB(0) regardless of the electronic state, as in the impulsive
limit under consideration, an integrated equation of motion
can be written for any system initial condition ρ(0) as ρ ij(T)
=

∑
qpχ ijqp(T)ρqp(0). Note that χ ijqp(T) is just a Liouville

space electronic population or coherence transfer from |i〉〈j|
(prepared by P) to |q〉〈p| (detected by P′). As in the prelim-
inary example, Sbb

PP ′ (T ) is a linear combination of entries of
reduced states ρel(T) of the singly excited manifold, so os-
cillations in it are a manifestation of electronic oscillations,
justifying the witness.

Given an electronic basis, Eq. (9) indicates that any pro-
cess matrix element χ ijqp(T), regardless of whether it involves
populations or coherences, can be oscillatory as a function
of T, although in practice, only Fourier components that sur-
pass a threshold in terms of amplitude and frequency will be
resolved as oscillations within the timescales of the experi-
ment. For a large variety of systems, however, it is possible
to associate the largest amplitude oscillations of χ (T) to elec-
tronic coherences in some basis. In the preliminary example,
the lack of dissipation implies that χijqp(T ) = δiqδjpe−iωqpT ,
so the only possible oscillatory contribution to SPP ′ (T ) corre-
sponds to χαβαβ(T ) = χ∗

βαβα(T ) (excitonic coherence). In the
non-adiabatic case where V01(R) *= V10(R) + c, each elec-
tronic state couples differently to the vibrational modes. How-
ever, in the limit of weak system-bath coupling, the vibronic
states |e〉|ν(e)

j 〉 are still the correct eigenstates of H0 up to ze-
roth order in the coupling, so any oscillations in the signal will
still be dominated by excitonic coherences, if any. Finally, for
intermediate and strong system-bath coupling together with
a fast bath decorrelation timescale, a polaron transformation
defines an electronic basis {|g〉, |α̃〉, |β̃〉, |f 〉} that diagonal-
izes a zeroth-order electronic Hamiltonian weakly coupled to
a renormalized bath (Ref. 45 and Appendix D). In this case,
the highest amplitude oscillations in its Sbb

PP ′ (T ) would cor-
respond to electronic coherences χα̃β̃α̃β̃(T ) = χ∗

β̃α̃β̃α̃
(T ). For

more general aggregates, if this were an issue of interest, a
partial QPT could be designed to determine the value of spe-
cific terms of χ (T) (Refs. 34 and 35).

TABLE I. Parameters of simulations.

M CD ID

E00/cm−1 0 0 0
〈E10 − ωC〉/cm−1 −125 −300 −200
〈E01 − ωC〉/cm−1 — −200 −200

J/cm−1 — 100 10
ω00, x = ω00, y/cm−1 100 100 100
ω10, x = ω01, x/cm−1 200 200 200
ω10, y = ω01, y/cm−1 150 150 150

.00, x/cm1/2 0 0 0

.00, y/cm1/2 0 0 0

.10, x/cm1/2 100 50 100

.10, y/cm1/2 0 0 0

.01, x/cm1/2 0 0 0

.01, y/cm1/2 0 50 100
FWHM=2

√
2ln2σ/fs 10 18.7 12.5
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FIG. 2. Inhomogeneously broadened absorption spectra (solid red) with pulse spectral profiles |ε̃p(ω)|2 on top (dotted black).

IV. NUMERICAL EXAMPLES

In order to illustrate the ideas in Secs. I– III, we have per-
formed simulations for the absorption spectra, the PP′, and the
2D-ES for a monomer, a dimer which exhibits coherent elec-
tronic oscillations, and an incoherent dimer which does not. In
all our models, each site has a single excitation and is coupled
to a single vibrational mode. More explicitly, for their Hamil-
tonians, we choose harmonic diabatic surfaces parametrized

by Vmn(x, y) = Emn + ω2
mn,x (x−.mn,x )2

2 + ω2
mn,y (y−.mn,y )2

2 , where
x and y are scaled nuclear coordinates, Emn are site en-
ergies, ωmn, x(y) are oscillator frequencies and .mn, x(y) are
electron-nuclear couplings.16, 17, 36, 42, 46, 47 We assume that
the doubly excited state has no binding energy, Vf (x, y)
= V10(x, y) + V01(x, y), and that the carrier frequency of
both pulses is ωp ≡ ωC. The parameters for the calculations
are listed in Table I. The transition dipoles of the sites are
oriented 90◦ from each other, and the ratio between their
norms is 1:3. Both pulses are polarized in the same direction.
All the simulations include thermal averaging of initial vibra-
tional states according to a Boltzmann distribution at 273 K,
isotropic averaging, and explicit inclusion of pulses with the
dynamics. Both the absorption spectra and the PP′ include in-
homogeneous broadening (ensembles of 500 molecules with
Gaussian site disorder of standard deviation 40 cm−1 and, for
the dimers, site energy correlation 0.8). This latter averaging
was not included for the 2D-ES due to the expensive cost of
their calculation.58

Figure 2 shows absorption spectra (solid red) for the
described systems as well as spectral profiles of the pulses
(dotted black) used for the simulations of the witness Sbb

PP ′ (T )
and the 2D-ES S̃(ωτ , T ,ωt ). These pulses approximately
cover all the vibronic transitions with similar amplitude, giv-
ing a rough idea of what broadband means in practice (in these
examples, a FWHM ranging from 10 to 18.7 fs). For rough es-
timates, there are typically two energy scales to consider, an
average coupling J and a reorganization energy λ, in which
case the impulsive limit is set by 1

σ
/ max(J, λ).

Figure 3 (top panel) shows 〈Sbb
PP ′ (T )〉, the averaged

witness as well as a few representative elements of χ (T)
(bottom panel), illustrating that Sbb

PP ′ (T ) is a direct manifesta-
tion of the dynamics of the singly excited manifold via the ele-
ments of χ (T) (see Eqs. (6)–(8)). Notice that only the coherent
dimer shows oscillations of significant amplitude, yielding a
positive witness. Figure 4 presents snapshots of the rephas-
ing 2D-ES, 〈S̃(ωτ , T ,ωt )〉, for a sampling of waiting times
T between 71.6 and 270.6 fs (left), indicating that vibronic
coherences within the same and also different excitation man-
ifolds manifest as diagonal and cross-peak oscillations.59 No-
tice that due to strong coupling to vibrations, the coherent
dimer also exhibits oscillations in the diagonal peaks, imply-
ing the inapplicability of previous measures for this case.27, 28

As another illustration, the integrated signal under the cross-
peaks encircled in black is in the right plots. Note that the
largest amplitude oscillations are in the monomer, which can-
not have coherent electronic oscillations for the singly excited

FIG. 3. (Top) Broadband PP′ spectra as a function of waiting time T as a witness for coherent electronic oscillations. The small oscillations in (a) and (c) are
due to finite pulse durations. (Bottom) The witness is a linear combination of elements of the process matrix χ (T). Traces of a few representative elements of
χ (T) are displayed.
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FIG. 4. (Left) Contour plot of the norm of broadband rephasing 2D-ES for
(a) monomer, (b) coherent dimer, and (c) incoherent dimer. Diagonal and
cross peaks oscillate as a function of time in all cases, indicating general vi-
bronic coherences but not necessarily electronic coherence. Color scale (ar-
bitrary units) is fixed throughout. Black dotted circles at left indicate cross
peaks whose real part amplitude is shown followed in a finer time grid in the
right panels (varying axes for each sample, arbitrary units). These traces are
the wrong witness for coherent electronic oscillations.

manifold, showing that oscillations in peaks in the 2D-ES do
not necessarily indicate coherent electronic oscillations.

Real pulses are not fully in the bb limit. The witness
is positive if, once the dc background is subtracted from
Sbb

PP ′ (T ), there are oscillations with amplitude proportional to
µ4, where µ is some estimate of an electronic transition dipole
moment. If spurious oscillations due to finite pulse-duration
are suspected, a more quantitative confirmation is the follow-
ing: (a) Collect traces of S

(σ )
PP (T ) at several pulse widths σ ,

all roughly in the broadband domain. (b) Fourier transform
the data: S̃

(σ )
PP (ωT ) = 1

2π

∫ ∞
0 dT eiωT S

(σ )
PP (T ). (c) Locate non-

zero frequencies of S̃
(σ )
PP (ωT ) corresponding to oscillations be-

tween discrete states (ignore the dc component). For each of
these frequencies ωT, plot S̃

(σ )
PP (ωT ) as a function of σ , and

linearly extrapolate to σ → 0. If the obtained intercepts are
at zero within noise levels, the witness is negative and there

are not coherent electronic oscillations. Appendix B displays
an analytical expression for the O(σ ) correction of Sbb

PP (T ),
providing a theoretical basis for this procedure. Alternatively,
the ideal Sbb

PP (T ) can be mocked by collecting several experi-
ments with narrowband pulses.48, 49

Although the theory has been detailed here for a dimer,
the witness is applicable to larger aggregates. In the case of
FMO, due to spectral congestion, it might be fruitful to focus
on pairs of exciton states at a time, for instance, the first and
the third exciton states,8, 10 either via direct PP′ measurements
that cover these transitions exclusively, or alternatively, inte-
grating windows of broadband 2D-ES corresponding to these
two states only, assuming that relaxation processes do not oc-
cur outside of this spectral window.

In conclusion, we have provided a conceptually simple
witness for coherent electronic oscillations based on broad-
band PP′ spectroscopy. We believe that this witness consti-
tutes a timely resource which will clarify the origin of the
oscillations in time-resolved spectroscopic signals of light-
harvesting complexes in photosynthetic antennae,12–15 and
hence provide more stringent tests on probing quantum ef-
fects in biological systems.
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APPENDIX A: PP′ SIGNAL IN TERMS
OF WAVEPACKET OVERLAPS

Consider the situation described in the main text, where
the total Hamiltonian is given by H = H0(R) + Hpert (s).
In this section, we will assume H0(R) to be the same
molecular piece as the one described in the main text, and
Hpert (s) = −µ · ε(r, s) to be the standard light-matter in-
teraction in the dipole approximation, although we study a
slightly more general setup, where the electric field is de-
scribed by three (instead of just two) non-collinear beams,
ε(r, s) =

∑3
p=1[εp(s − tp)eikp ·r ep + c.c.] where we have in-

clude the spatial modulation of the fields via the different
wavevectors kp. The expressions for SPP ′ (T ) will appear as
we take the limit of the first two pulses coinciding in time.

The pulses generate a time-dependent polarization
P(r, s) = Tr(µρ(r)) =

∑
k P (k; s)eik·r on each molecule at

position r.60 The allowed wavevectors in the sum are the
phase-matching directions k = qk1 + rk2 + sk3 for integers
q, r, s, and encode different sequences of interactions of the
pulses with the molecule. We are interested in the complex
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signal S at the photon-echo (PE) phase-matched direc-
tion kPE = −k1 + k2 + k3, which can be detected by mix-
ing the material ensemble emission with a local oscillator
(LO) pulse ε4(s) travelling along k4 = kPE , S(τ, T , t)
= 2i

∫ ∞
−∞ dsε∗

4 (s − t4)e4 · P(kPE ; τ, T , s), where τ = t2 − t1
(coherence time), T = t3 − t2 (waiting time), and t = t4
− t3 (echo time) (Ref. 38). A 2D-ES S̃(ωτ , T ,ωt ) can be con-
structed as a function of T by Fourier transforming the signal
with respect to τ and t,39, 41

S̃(ωτ , T ,ωt ) =
∫ ∞

0
dτe−iωτ τ

∫ ∞

0
dteiωt t S(τ, T , t). (A1)

In general, oscillations in S(τ , T, t) and S̃(ωτ , T ,ωt ) can
be associated to coherent superpositions of vibronic eigen-
states of H0, but not necessarily of electronic states.13 In
the main text, we pay special attention to the PP′ limit
SPP ′ (T ), which is equivalent to a differential transmission sig-
nal, where the first two pulses act as the pump P, (ε1 = ε2

≡ εP), the last two as the probe P′ (ε3 = ε4 = εP ′), so that the
coherence and echo times vanish, τ = t = 0, and P and P′ are
well separated (i.e., T / σ ). More explicitly,

SPP ′(T ) = −20
∫ ∞

−∞
dt ′ε∗

4 (t ′ − t4)e4 · P(kPE ; 0, T , 0). (A2)

This limit justifies the form of Hpert(s) given in the
main text, which only consists of two pulses. Note that
SPP ′ (T ) can be recovered from the 2D-ES as an in-
verse Fourier transform at zero frequencies, SPP ′ (T ) = 1

π2

{
∫ ∞
−∞ dωτ

∫ ∞
−∞ dωt S̃(ωτ , T ,ωt )}.

We derive a wavepacket overlap formula for SPP ′ (T ) as-
suming that P and P′ are well separated, T / σ , analogously
to the doorway-window approach.38 First, we conveniently
define the following wavefunctions:

|!0(s)〉 = e−iH0(s)|!0(0)〉, (A3)

|!P (s)〉 = i

∫ ∞

−∞
ds ′e−iH0(s−s ′){µ · eP (εP (s ′) + c.c.)}|!0(s ′)〉,

(A4)

|!PP ′(s)〉

= i

∫ ∞

−∞
ds ′e−iH0(s−s ′){µ · eP ′ (εP ′(s ′−T ) + c.c.)}|!P (s ′)〉,

(A5)

|!PP (s)〉= (i)2
∫ ∞

−∞
ds ′

∫ s ′

−∞
ds ′′e−iH0(s−s ′){µ · eP (εP (s ′)+c.c.)}

×e−iH0(s ′−s ′′){µ · eP (εP (s ′′) + c.c.)}|!0(s ′)〉,
(A6)

|!P ′P ′(s)〉

= (i)2
∫ ∞

−∞
ds ′

∫ s ′

−∞
ds ′′e−iH0(s−s ′){µ · eP ′(εP ′(s ′−T ) + c.c.)}

× e−iH0(s ′−s ′′){µ · eP ′(εP ′(s ′′ − T )+c.c.)}|!0(s ′′)〉, (A7)

|!PPP ′(s)〉 = (i)
∫ ∞

−∞
ds ′e−iH0(s−s ′){µ · eP ′(εP ′(s ′ − T )

+ c.c.)}|!PP (s ′)〉, (A8)

FIG. 5. Feynman diagrams for the wavefunctions defined in Eqs. (A3)–(A9).

|!PPP ′P ′(s)〉 = (i)
∫ ∞

−∞
ds ′e−iH0(s−s ′){µ · eP ′(εP ′(s ′ − T )

+ c.c.)}|!PPP ′(s ′)〉, (A9)

which are valid for s / T (after the envelope of the last pulse
has substantially decayed), and which correspond to the pro-
cesses indicated by their subscripts, i.e., |!PPP ′P ′(s)〉 cor-
responds to the fourth order wavefunction (O(λ4)) resulting
from two actions of P and two of P′ (see Fig. 5).

Equations (A3)–(A9) allow for a calculation of
P(kPE ; 0, T , 0) and hence of SPP ′ (T ) via Eq. (A2). The
phase-matching condition kPE = −k1 + k2 + k3 together
with the rotating-wave approximation indicate that for each
wavevector +kj (−kj ), the pulse j acts with the term
εj (ε∗

j ), exciting (de-exciting) the ket or de-exciting (excit-
ing) the bra. Collecting all the terms gives SPP ′ (T ) = SSE(T )
+ SESA(T ) + SGSB (T ):

SSE(T )

= −20
∫ ∞

−∞
dt ′〈!PP ′(t ′)|{ε∗

P ′(t ′ − T )µ · eP ′}|!P (t ′)〉

= −20(−i)
∫ ∞

−∞
dt ′

∫ t ′

−∞
ds ′〈!P (s ′)|{−iεP ′(s ′−T )µ · eP ′}

× eiH0(t ′−s ′){(i)ε∗
P ′(t ′ − T )µ · eP ′}|!P (t ′)〉

= 2〈!PP ′ (s)|g〉〈g|!PP ′(s)〉, (A10)

SESA(T )

= −20
∫ ∞

−∞
dt ′〈!P (t ′)|{ε∗

P ′(t ′ − T )µ · eP ′}|!PP ′(t ′)〉

= −20(i)
∫ ∞

−∞
dt ′

∫ t ′

−∞
ds ′〈!P (t ′)|{(−i)ε∗

P ′(t ′ − T )µ · eP ′}

× e−iH0(t ′−s ′){iεP ′(s ′ − T )µ · eP ′}|!P (s ′)〉

= −2〈!PP ′ (s)|f 〉〈f |!PP ′ (s)〉, (A11)

SGSB (T )

= −20
∫ ∞

−∞
dt ′{〈!PP (t ′)|{ε∗

P ′(t ′ − T )µ · eP ′}|!P ′(t ′)〉

+ 〈!0(t ′)|{ε∗
P ′(t ′ − T )µ · eP ′}|!PPP ′(t ′)〉}

= −20(−i)
∫ ∞

−∞
dt ′{〈!PP (t ′)|{(i)ε∗

P ′(t ′−T )µ · eP ′}|!P ′(t ′)〉

+ 〈!0(t ′)|{(i)ε∗
P ′(t ′ − T )µ · eP ′}|!PPP ′(t ′)〉}

= 21{〈!PP (s)|g〉〈g|!P ′P ′(s)〉+〈!0(s)|g〉〈g|!PPP ′P ′(s)〉},
(A12)
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where again, s / T, and otherwise, the signals are inde-
pendent of s. This can be understood in physical terms: af-
ter the action of the pulses, the wavefunctions still evolve
according to H0, but the overlaps do not change in time.
Equations (A10)–(A12) are in the spirit of wavepacket ap-
proaches to PP′ spectroscopy.16–18, 42, 50–52

In order to gain additional insight, we interpret the
formulas in terms of differential transmission by enumer-
ating all the possible absorption and emission processes
which are quadratic in P and P′. P promotes a wavepacket
from |g〉 to |!P(s)〉, a superposition of wavepackets in
|α〉 and |β〉. P′ acts on this state, creating |!PP ′(s)〉, a
superposition of wavepackets in |g〉 and |f〉. Naturally, the
photons emitted in SE correspond to the squared amplitude
of 〈g|!PP ′(t)〉, whereas the ones absorbed in ESA are
associated with the squared amplitude of 〈f |!PP ′(s)〉,
hence providing an intuition for the expressions for SSE(T)
and SESA(T). Finally, SGSB(T) can be thought as account-
ing for the “leftover” SE processes, namely, overlaps
between wavepackets created by pulses at different times.
After P and P′, the total ground state wavepacket is
〈g|!(t)〉 = 〈g|(|!0(t)〉 + |!PP ′(t)〉 + |!PP (t)〉 + |!P ′P ′ (t)〉
+ |!PPP ′P ′(t)〉 + higher order contributions). Collecting
wavepacket overlaps which are quadratic in both pulses
yields SSE(T) + SGSB(T). “Leftover” ESA processes do not
contribute to SPP ′(T ) because they do not fulfill the PE
phase-matching condition (they appear in double-quantum
coherence spectroscopy, for instance).

Thermal effects follow from averaging the signals cor-
responding to initial states |!0(0)〉 sampled according to a
Boltzmann distribution.

APPENDIX B: GENERAL EXPRESSIONS FOR SPP ′ (T )
IN VIBRONIC BASIS

In order to manipulate the wavepacket overlap expres-
sions in Appendix A, it is convenient to define two vibronic
bases:

! The vibronic eigenbasis of H0,{|g, ν
(g)
n 〉, |ζ 〉, |f, ν

(f )
n 〉},

which satisfy

H0
∣∣g, ν(g)

n

〉
= ωgn

∣∣g, ν(g)
n

〉
, (B1)

H0|ζ 〉 = ωζ |ζ 〉, (B2)

H0
∣∣f, ν(f )

n

〉
= ωf n

∣∣f, ν(f )
n

〉
, (B3)

where |ζ 〉 is any of the vibronic states of the singly
excited manifold.! The tensor product basis {|m, ν

(g)
n 〉}, where {|m〉} de-

notes electronic states in an arbitrary electronic ba-
sis (for instance, the excitonic one), and {|ν(g)

n 〉} refers
to vibrational eigenstates of the ground vibrational
Hamiltonian, Hvib,00(R) = TN + V00(R).

It is always possible to write states in the vibronic
eigenbasis in terms of the second one: |g, ν

(g)
n 〉 stays

the same, |ζ 〉 =
∑

mn〈m, ν
(g)
n |ζ 〉|m, ν

(g)
n 〉, and |f, ν

(f )
n′ 〉

=
∑

n | f, ν
(g)
n′ 〉 〈f, ν

(g)
n | f, ν

(f )
n′ 〉 =

∑
n〈ν

(g)
n |ν(f )

n′ 〉|f, ν
(g)
n′ 〉.

Using both bases, the process matrix (see Eq. (9)) affords a
compact representation,

χijqp(T ) = Trnuc{〈i|e−iH0T (|q〉〈p| ⊗ ρB(0)) eiH0T |j 〉}

=
∑

ζ ζ ′nn′

pne
−i(ωζ−ωζ ′ )T

〈
i, ν

(g)
n′

∣∣ζ
〉〈
ζ
∣∣q, ν(g)

n

〉

×
〈
p, ν(g)

n

∣∣ζ ′〉〈ζ ′∣∣j, ν(g)
n′

〉
. (B4)

Our goal is to express SPP ′ (T ) for arbitrary bandwidth in
a similar style, so that in the broadband limit, we can identify
it as a linear combinations of elements of χ (T), hence prov-
ing Eqs. (6)–(8). We start by rewriting Eqs. (A3)–(A9) in the
vibronic bases:

|!PP ′(s)〉 = −
∑

iq

(µgi · eP ′)(µqg · eP )
∑

ζn′

〈
i, ν

(g)
n′

∣∣ζ
〉〈
ζ
∣∣q, ν(g)

n

〉
e−iωζ (s−t1)

×
(

∑

m

〈
ν(f )

m

∣∣ν(g)
n′

〉
ε̃P ′(ωf m,ζ )ε̃P (ωζ,gn)|f 〉 + ε̃P ′(ωζ,gn′ )ε̃P (ωζ,gn)|g〉

)
∣∣ν(g)

n

〉
, (B5)

|!PP (s)〉 = −
∑

iq

(µig·eP )(µqg · eP )
∑

ζn′

〈
i, ν

(g)
n′

∣∣ζ
〉〈
ζ
∣∣q, ν(g)

n

〉
e−iωgn′ (s−t1)

×1
2
ε̃P (ωgn′,ζ )ε̃P (ωζ,gn)

(
1 − Erf

(
iσ ((ωC + ωgn′,ζ ) + (ωC − ωζ,gn))

2

))
|g〉

∣∣ν(g)
n′

〉
, (B6)

|!P ′P ′(s)〉 = −
∑

jp

(µig · eP ′)(µpg · eP ′ )
∑

ζn′

〈
j, ν

(g)
n′

∣∣ζ
〉〈
ζ
∣∣p, ν(g)

n

〉
e−iωgn′ (s−t2)

×1
2
ε̃P (ωgn′,ζ )ε̃P (ωζ,gn)

(
1 − Erf

(
iσ ((ωC + ωgn′,ζ ) + (ωC − ωζ,gn))

2

))
|g〉

∣∣ν(g)
n′

〉
, (B7)

Jacob


Jacob
j

Jacob
exp(-w_gn t_1)

Jacob
exp(-w_gn t_2)
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|!PPP ′P ′(s)〉 =
∑

ijqp

(µgj ·eP ′)(µpg · eP ′)(µgi·eP )(µqg · eP )

×
∑

ζ ′ζnn′n′′

〈
j, ν

(g)
n′′

∣∣ζ ′〉〈ζ ′∣∣p, ν
(g)
n′

〉〈
i, ν

(g)
n′

∣∣ζ
〉〈
ζ
∣∣q, ν(g)

n

〉
e−iωgn′ (s−t1)

×1
4
ε̃P ′(ωgn′′,ζ ′ )ε̃P ′(ωζ ′,gn′ )ε̃P (ωgn′,ζ )ε̃P (ωζ,gn)

×
(

1 − Erf
(

iσ ((ωC + ωgn′′,ζ ) + (ωC − ωζ ′,gn′ )
2

))

×
(

1 − Erf
(

iσ ((ωC + ωgn′,ζ ) + (ωC − ωζ,gn)
2

))
|g〉

∣∣ν(g)
n′′

〉
, (B8)

where the Erf functions appear due to pulse overlap. Equations (A10)–(A12) together with Eqs. (B5)–(B8) yield

SSE(T ) =
∑

ijqp

(µgi·eP ′)(µqg · eP )(µgp · eP )(µjg · eP ′ )
∑

ζ ζ ′nn′

ε̃P ′(ωgn′,ζ )ε̃P (ωζ,gn)ε̃P (ωgn,ζ ′)ε̃P ′(ωζ ′,gn′ )

×pne
−i(ωζ−ωζ ′ )T

〈
i, ν

(g)
n′

∣∣ζ
〉〈
ζ
∣∣q, ν(g)

n

〉〈
p, ν(g)

n

∣∣ζ ′〉〈ζ ′∣∣j, ν(g)
n′

〉
, (B9)

SESA(T ) = −
∑

ijqp

(µf i·eP ′)(µqg · eP )(µgp·eP )(µjf · eP ′)

×
∑

ζ ζ ′nn′n′′m

〈
ν

(g)
n′′

∣∣ν(f )
m

〉〈
ν(f )

m

∣∣ν(g)
n′

〉
ε̃P ′(ωf m,ζ )ε̃P (ωζ,gn)ε̃P (ωgn,ζ ′ )ε̃P ′(ωζ ′,f m)

×pne
−i(ωζ−ωζ ′ )T

〈
i, ν

(g)
n′

∣∣ζ
〉〈
ζ
∣∣q, ν(g)

n

〉〈
p, ν(g)

n

∣∣ζ ′〉〈ζ ′∣∣j, ν(g)
n′′

〉
, (B10)

SGSB(T ) = 21
∑

ijqp

(µgi · eP ′ )(µqg · eP ′)(µgp · eP )(µjg·eP )
(

1
4

) ∑

ζ ζnn′

ε̃P ′(ωgn′,ζ )ε̃P ′(ωζ,gn)ε̃P (ωgn,ζ ′)ε̃P (ωζ ′,gn′ )

×
{
pn

〈
i, ν

(g)
n′

∣∣ζ 〉
〈
ζ
∣∣q, ν(g)

n

〉〈
p, ν(g)

n

∣∣ζ ′〉〈ζ ′∣∣j, ν(g)
n′

〉
e−iωgn,gn′T

×
(

1 − Erf
(

iσ ((−ωgn′,ζ − ωC) + (ωζ,gn − ωC))
2

)) (
1 − Erf

(
iσ ((−ωgn,ζ ′ − ωC) + (ωζ ′,gn′ − ωC))

2

)∗)

+pn

〈
i, ν

(g)
n′

∣∣ζ
〉〈
ζ
∣∣q, ν(g)

n

〉 (〈
p, ν(g)

n

∣∣ζ ′〉〈ζ ′∣∣j, ν(g)
n′

〉
eiωgn′ ,gnT

)∗

×
(

1 − Erf
(

iσ ((−ωgn′,ζ − ωC) + (ωζ,gn − ωC))
2

)) (
1 − Erf

(
iσ ((−ωgn,ζ ′ − ωC) + (ωζ ′,gn′ − ωC))

2

)) }
.

(B11)

The expressions above can be intuitively understood in terms
of the double-sided Feynman diagrams in Fig. 6. The ex-
pression for GSB consists of a sum of terms corresponding
to two types of Feynman pathways, which are different in
general.

In the broadband limit where ε̃P (ω) = ε̃P ′(ω) = λ,
many sums above collapse through resolutions of the iden-
tity, and we straightforwardly recover Eqs. (6)–(8). In

this limit, as highlighted by the T-independent form of
Eq. (8), the two types of GSB pathways yield the same
stationary background to the signal (caused by copies of
the initial stationary wavepackets in the ground electronic
surface).

In the practical case where the pulses are broad, but not
infinitely sharp in time, the leading (first) order correction in
σ comes from the pulse-overlaps (Erf-functions) in the GSB

Jacob
zeta'

Jacob
exp[-i w_gn''(s-t_2)]

Jacob


Jacob


Jacob
-i w_gn' T

Jacob
*

Jacob


Jacob
*

Jacob
*

Jacob
n

Jacob
n'

Jacob
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term. We can expand, SPP ′(T ) = Sbb
PP ′ (T ) + S

(1)
GSB(T ),

S
(1)
GSB(T ) = −σλ

4

2

∑

ijqp

(µgi · eP ′)(µqg · eP ′ )(µgp · eP )(µjg·eP )

×1
{ ∑

ζ ζnn′

pn〈i, ν(g)
n′ |ζ 〉〈ζ |q, ν(g)

n 〉〈p, ν(g)
n |ζ ′〉〈ζ ′|j, ν(g)

n′ 〉e−iωgn,gn′ T

× i((−ωgn′,ζ − ωC) + (ωζ,gn − ωC))
√
π

+ −i((−ωgn,ζ ′ − ωC) + (ωζ ′,gn′ − ωC))
√
π

+
∑

ζ ζnn′

pn〈i, ν(g)
n′ |ζ 〉〈ζ |q, ν(g)

n 〉
(
〈p, ν(g)

n |ζ ′〉〈ζ ′|j, ν(g)
n′ 〉eiωgn′ ,gnT

)∗

+ i((−ωgn′,ζ − ωC) + (ωζ,gn − ωC))
√
π

+ i((−ωgn,ζ ′ − ωC) + (ωζ ′,gn′ − ωC))
√
π

}
.

SE and ESA processes only contribute to corrections of
O(σ 2) via the Gaussian spectral profile of the pulses.

APPENDIX C: REQUIREMENT OF BROADBAND
PUMP P

Although the conclusions of the preliminary example in
the main text hold even in the case of narrowband P, we also
require broad bandwidth for P for two reasons:

1. Non-stationary GSB contributions. Equations
(A6) and (A9) show that in the limit of broadband
P, this pulse promotes a wavepacket to the excited states
and immediately back down to |g〉, yielding a wave-
function |!PP(s)〉 that is proportional to the original
|!0(0)〉 before any pulse (also see Eq. (8)). In this limit,
as emphasized in Appendix A, SGSB(T) yields a constant
background as a function of T, giving the opportunity to
identify SPP ′ (T ) as a selective probe for singly excited
state dynamics, as opposed to a measurement which
also includes information about dynamics in |g〉 or |f〉.
Under a narrowband P, this no longer holds, as shown
by Eq. (B11), which depends on T in general. In this

FIG. 6. Double-sided Feynman diagrams for general PP′ signal.

case, |!PP(s)〉 will be a non-stationary wavepacket in
the ground electronic surface, which will manifest as
time-evolving overlaps both in 〈!PP (s)|g〉〈g|!P ′P ′(s)〉
and in 〈!0(s)|g〉〈g|!PPP ′P ′(s)〉 (see Eq. (A12)).

2. Consistency with QPT. As mentioned in the main text,
the initial states prepared under a broadband P are
of the form ρ(0) = |q〉〈p| ⊗ ρB(0), where ρB(0)
=

∑
n pn|ν(g)

n 〉〈ν(g)
n | is the initial thermal ensemble of vi-

brations in the ground electronic surface for all |q〉〈p|.
Under a narrowband P, it is not possible to prepare
initial tensor product states between the system and a
fixed bath ρB, so SPP ′ (T ) can no longer be written in
terms of elements of a single χ (T), and the equation
ρ(T) = χ (T)ρ(0) loses its meaning.

APPENDIX D: POLARON TRANSFORMATION

Here, we summarize the essential features of the po-
laron transformation used in the arguments of the article.
We closely follow the works of Silbey, Harris, and co-
workers.45, 53, 54 Consider the approximation where the dia-
batic potential energy surfaces are given by harmonic wells
along each nuclear coordinate, V10(R) = E10 +

∑
n

mnω
2
nR

2
n

2
+

√
2mnω3

ng10,nRn, and V01(R) has the same form except
for the substitution 10 → 01 in the subscripts, whereas
Vg(R) and Vf (R) have arbitrary shapes. Here, ωn denotes
the nth mode frequency, whereas the displacements g10, n

denote linear couplings of the electronic system to the nu-
clear bath. Define the harmonic oscillator creation and anhi-
lation operators in the usual way b

†
n =

√
mn

2 xn ∓ 1√
2mnωn

∂
∂xn

,

and also the generator G =
∑

n(b†n − bn)(g10,n|10〉〈10|
+ g01,n|01〉〈01|) such that U = eG corresponds to a unitary
transformation of the full-polaron transformation.54 It fol-
lows that H̃ (R) ≡ eGH0(R)e−G = H̃0(R) + H̃1(R), where
H̃0(R) = TN + H̃el(R) is our new zeroth-order Hamiltonian,
and H̃1(R) is the perturbation term, whenever it is small
compared to H̃0(R). To make a connection with the previ-
ous notation, we explicitly write H̃el =

∑
mn Ṽmn|mn〉〈mn|
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+ J̃ (|10〉〈01| + |01〉〈10|), where,

Ṽ10 = E10 −
∑

n

ωng
2
10,n +

∑

n

mnω
2
nR

2
n

2
,

Ṽ01 = E01 −
∑

n

ωng
2
01,n +

∑

n

mnω
2
nR

2
n

2
,

J̃ = J 〈w〉,

w = exp

(
∑

n

(g10,n − g01,n)(b†n − bn)

)

,

〈w〉 = Tr(wρB(0))

= exp

(

−
∑

n

coth
βωn(gnD − gnA)2

2

)

.

The expressions β, ρB(0) =
∏

n

∑
r

exp(−βωn(r+ 1
2 ))|ωn,r〉〈ωn,r|

Zn(β) ,
Zn(β) = 1

2sinh(βωn/2)
, |ωn, r〉 label the inverse temperature,

the initial thermal ensemble of vibrations, the partition func-
tion of the nth oscillator, and the rth eigenstate of the nth
harmonic oscillator, respectively. J̃ can be interpreted as a
renormalized site-site coupling due to phonon-dressing. Fur-
thermore, H̃1(R) = J (w − 〈w〉)|10〉〈01| + h.c. Jang advises
to consider the smallness of the quantity J

√
1 − w2 as the fig-

ure of merit for the validity of perturbation theory, and hence
for the usefulness of the polaron transformation.54 Cao and
co-workers note that the accuracy of the polaron transforma-
tion is guaranteed only in the scenario of fast bath decorrela-
tion compared to the other relevant timescales.55

If the dynamics of all the degrees of freedom are gov-
erned by H̃0(R) alone, the electronic system is effectively
uncoupled from the nuclear bath. The diagonalization of
H̃0(0) yields polaronic states {|g〉, |α̃〉, |β̃〉, |f 〉} which satisfy
χijqp(T ) = δiqδjpe−iωqpT . As can be easily checked, Eqs. (6)–
(8) are invariant under change of basis. Hence, if H̃1(R) can
be guaranteed to be a small perturbation for H̃0(R), to zeroth-
order in H̃1(R), the coherent electronic oscillations in Sbb

PP ′ (T )
correspond to electronic coherences in the polaronic basis.

The steps above have been outlined for the full-polaron
transformation, but the conclusion can be easily seen to hold
whenever the total Hamiltonian can be repartitioned into a
large contribution and a small system-bath coupling. Ex-
amples include the variational polaron transformation,45, 53

which interpolates between weak and strong coupling be-
tween the original system and bath, as well transformations
which include anharmonicities in the diabatic potential energy
surfaces (quadratic coupling between the original system and
bath56).
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