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ABSTRACT: Two-dimensional (2D) materials provide a
platform for strong light−matter interactions, creating wide-
ranging design opportunities via new-material discoveries and
new methods for geometrical structuring. We derive general
upper bounds to the strength of such light−matter
interactions, given only the optical conductivity of the material,
including spatial nonlocality, and otherwise independent of
shape and configuration. Our material figure-of-merit shows
that highly doped graphene is an optimal material at infrared
frequencies, whereas single-atomic-layer silver is optimal in the
visible. For quantities ranging from absorption and scattering
to near-field spontaneous-emission enhancements and radia-
tive heat transfer, we consider canonical geometrical structures and show that in certain cases the bounds can be approached,
while in others there may be significant opportunity for design improvement. The bounds can encourage systematic
improvements in the design of ultrathin broadband absorbers, 2D antennas, and near-field energy harvesters.
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Two-dimensional (2D) materials1,2 and emerging methods3−8

for patterning 2D layers and their surroundings are opening an
expansive design space, exhibiting significantly different
optical9−11 (and electronic) properties from their 3D counter-
parts. In this Letter, we identify energy constraints embedded
within Maxwell’s equations that impose theoretical bounds on
the largest optical response that can be generated in any 2D
material, in the near or far field. The bounds account for
material loss as encoded in the real part of a material’s
conductivity (in the case of a spatially local conductivity tensor
σ, they are proportional to ∥σ†(Re σ) −1σ∥ and are otherwise
independent of shape and configuration. We derive the bounds
through convex constraints imposed by the optical theo-
rem12−14 and its near-field analogue, leveraging a recent
approach we developed for spatially local 3D materials.15 In
addition to accommodating nonlocal models, this work
demonstrates starkly different near-field dependencies of 2D
and 3D materials. For graphene, the 2D material of foremost
interest to date, the bounds bifurcate into distinctive low- and
high-energy regimes: the low-energy bounds are proportional
to the Fermi level, whereas the high-energy bounds are
proportional to the fine-structure constant, α, for any
geometrical configuration. We find that far-field bounds on
the extinction cross-section can be approached by elliptical

graphene disks, whereas the near-field bounds on the local
density of states16−20 and radiative heat transfer rate21−26

cannot be approached in prototypical flat-sheet configurations.
The bounds presented here provide a simple material figure-of-
merit (FOM) to evaluate the emerging zoo of 2D materials and
offer the prospect of greater optical response via computational
design. The material figure-of-merit can guide ongoing efforts
in 2D-material discovery, while the general bounds can shape
and drive efforts toward new levels of performance and better
optical components.
Plasmonics in 2D materials opens the possibility for stronger

light−matter interactions, which may be useful for techno-
logical applications, including single-molecule imaging27−30 and
photovoltaics,31,32 as well as for basic-science discoveries, such
as revealing forbidden transitions,33 and achieving unity optical
absorption in graphene through optical impedance match-
ing.5,34−36 Theoretical work toward understanding optical
response in 2D materials has focused on analytical expressions
using specific geometrical5,9,37 or metamaterial-based38 models
but from a design perspective such assumptions are restrictive.
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Quasistatic sum rules can yield upper limits on the cross-
section,39,40 but have been restricted to far-field quantities and
isotropic and spatially local materials. A well-known microwave-
engineering bound, known as Rozanov’s theorem,41 offers a
bandwidth limit as a function of material thickness, but its
contour-integral approach requires perfectly conducting
boundaries that are not applicable for 2D materials at optical
frequencies. Here, we find constraints that do yield 2D-material
optical-response bounds given only the material properties. We
provide a general framework to derive limits to any optical-
response quantity (including cross sections, spontaneous-
emission enhancements, and radiative-heat exchange), and we
present computational results suggesting pathways to approach
the new bounds. For a broad class of hydrodynamic nonlocal-
conductivity models,42,43 which capture several important
nonclassical features at length scales approaching the quantum
regime, we derive general bounds in terms of a constitutive-
relation operator. We show that the nonlocal response is
necessarily bounded above by the local-response bounds;
further, by exploiting the quasistatic nature of interactions at
nonlocal length scales, we show that the maximum response
must be reduced in proportion to a ratio of the scatterer size to
the effective “diffusion” length.
To derive general scattering bounds, consider a 2D scatterer

embedded in a possibly heterogeneous background. Passivity,
which implies the absence of gain and that polarization currents
do no work,44 requires that the powers absorbed (Pabs) and
scattered (Pscat) by the target body are non-negative.15 These
almost tautological conditions in fact dictate bounds on the
largest currents that can be excited at the surface of any 2D
structure. The key is that their sum, extinction (Pext = Pabs +
Pscat), is given by the imaginary part of a forward-scattering
amplitude, which is a well-known consequence of the optical
theorem.12−14 For an arbitrarily shaped 2D scatterer with area
A that supports electric surface currents K (a magnetic-current
generalization is given in the Supporting Information), the
absorbed and extinguished powers are given by13,45

∫= *·P AE K
1
2

Re d
A

abs (1a)

∫= * ·P AE K
1
2

Re d
A

ext inc (1b)

where, in the latter expression, ∫ A Einc* ·K dA is a forward-
scattering amplitude. A key feature of the optical theorem is
that the extinction is the real part of an amplitude, which is
linear in the induced currents. By contrast, absorption is a
quadratic function of the currents/fields. Yet extinction must be
greater than absorption (due to the Pscat ≥ 0 condition noted
above), requiring the linear functional to be greater than the
quadratic one, a condition that cannot be satisfied for large
enough currents. The inequality Pabs ≤ Pext thereby provides a
convex constraint for any optical-response function. Any
optical-response maximization can thus be formulated as an
optimization problem subject to this convex passivity
constraint.15 For a generic figure-of-merit f(E) of the fields
(or, equivalently, currents), the design problem can be written

≤

f

P P

E

E E

maximize ( )

subject to ( ) ( )abs ext (2)

Thanks to the convex nature of the constraint Pabs ≤ Pext and
the simple expressions for Pabs and Pext, eq 2 can often be solved

analytically, unlike the highly nonconvex Maxwell equations,
thereby providing general upper-bound expressions without
approximation.
To find bounds that solve eq 2, we must specify a

relationship between the field E and the induced current K.
To maintain generality, we assume only that they are related by
a linear operator ,

=K E (3)

where in different size, material, and parameter regimes, may
represent anything from a density-functional-theory operator46

or a hydrodynamic model43,47 to a simple scalar conductivity.
For a scalar conductivity σ, σ= 1/ . Given this current−field
relation, the quadratic dependence of absorption on induced
c u r r e n t , p e r e q 1 a , i s m a d e e x p l i c i t :

∫= *P AK K(1/2)Re d
Aabs . If we choose the figure of

merit to be the absorbed or scattered power, then
straightforward variational calculus (see Supporting Informa-
tion) from eq 2 yields the bounds

∫β≤ * ·α α
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where α denotes absorption, scattering, or extinction. The
variable β takes the values

β
α
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4

, scattering
(5)

which represent a power-balance asymmetry: absorption and
extinction are maximized when Pabs = Pext, whereas scattering is
maximized when Pscat = Pabs = Pext/2, akin to conjugate-
matching conditions in circuit theory.48 Equation 4 sets a
general bound at any frequency given only the incident field
and the (material-driven) field−current relationship, dictated
by the operator . The bounds apply in the far field, where Einc
might be a plane wave or Bessel beam, as well as the near field,
where Einc might be the field emanating from dipolar sources.
Further below, we show that −(Re ) 1 can be considerably
simplified in the case when is the differential operator arising
in nonlocal hydrodynamic models. First, however, we simplify
eq 4 for the important case of a spatially local conductivity.
A local conductivity σ, relating currents at any point on the

surface to fields at the same point, by K = σE, is the primary
response model employed in the study of optical and plasmonic
phenomena, in two as well as three dimensions. In 2D
materials, it is common to have off-diagonal contributions to
the conductivity (e.g., through magnetic-field biasing), and thus
we allow σ to be a general 2 × 2 matrix (implicitly restricting E
to its two components locally tangential to the 2D surface).
Given that σ= −1, the term involving in the bound of eq 4
can be written: σ σ σ=− † −(Re ) (Re )1 1 . In far-field scattering,
the quantity of interest is typically not the total absorbed or
scattered power, but rather the cross-section, defined as the
ratio of the power to the average beam intensity. The scattering
cross-section, for example, is given by σscat = Pscat/Iinc, where Iinc
= |Einc|avg

2 /2Z0. Then, the bound of eq 4 simplifies for the
absorption, scattering, and extinction cross sections to

σ σ σ
σ

β≤α
α

† −

A
Z (Re )0

1

2 (6)
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where Z0 is the impedance of free space, βα is defined above in
eq 5, and ∥·∥2 denotes the induced matrix 2-norm49 (which is
the largest singular value of the matrix). The power of eq 6 is its
simplicitythe scattering efficiency of any 2D scatterer,
whether it is a periodic array of circles,5 a spherical coating,50

an isolated strip,37 or in any other configuration, has an upper
bound defined solely by its material conductivity. We show
below that simple ellipses can approach within ≈10% of the
bounds, and that structures with two additional degrees of
freedom can approach within <1% of the bounds.
A key feature of the approach outlined here is that the optical

response of a 2D material of interest can be cleanly delineated
(without approximation) from the response of any “back-
ground” structures. Our formulation relies on the passivity
constraints Pscat,Pabs > 0, and yet the choice of “incident” and
“scattered” fields is arbitrary, as long as they sum to the total
fields. As an example, there is significant interest in integrating
2D materials with photonic crystals;6,7 we can define the
incident field that controls the bounds in eqs 4 and 6 as the
field in the presence of only the photonic crystal, and the
scattered field as arising only from the addition of the 2D layer
above it. The limits of eqs 4 and 6, as well as the limits derived
below, then capture the maximum achievable enhancement due
to the 2D material itself, subject to its inhomogeneous
environment. Throughout this Letter, we focus on free-standing
graphene to understand its unique optical response, noting that
generalization involving substrates and more complex sur-
rounding structures can follow precisely this prescription.
Near-field optical response in the presence of nearby emitters

is at least as important as far-field response. Here we find
bounds to two important near-field quantities: (i) the local
density of states (LDOS), which is a measure of the
spontaneous-emission rate of a single excited dipole near the
scatterer, and (ii) near-field radiative heat transfer, which is a
measure of the radiation exchange between two bodies at
different temperatures. The (electric) LDOS at a point x is
proportional to the power radiated by an (orientation-
averaged) electric dipole at that point and is given by the
expression ρ = (1/πω)Im∑j pj·Ej(x), where Ej is the electric
field excited by the dipole with moment pj, and where the sum
over j = x,y,z accounts for orientation averaging.16 The
expression for ρ shows that LDOS is dictated by a causal
amplitude (not a squared amplitude), exhibiting similar
mathematical structure to extinction. The source of the
similarity is that both extinction and LDOS can be decomposed
into radiative and nonradiative components, which for the
LDOS we denote by ρrad and ρnr, respectively. The nonradiative
part of the LDOS is given by the absorption in the scattering
body (which is often an antenna), and per eq 1a is quadratic in
the induced currents. Unlike far-field scattering, in the near field
the incident field increases rapidly at smaller distances d (|E| ∼
1/d3). Thus, the same convex-optimization problem laid out in
eq 2 leads to distance-dependent LDOS bounds via the
replacements Pext → ρ and Pabs → ρnr. For an arbitrarily shaped
2D surface separated from the emitter by some minimum
distance d, the bounds are (Supporting Information)

σ σ σ
ρ
ρ

β
≤α α † −

k d
Z

3

8( )
(Re )

0 0
4 0

1

2 (7)

where α in this context denotes the total, radiative, or
nonradiative component of the LDOS, k0 = ω/c, and ρ0 is
the free-space electric-dipole LDOS, ρ0 = ω2/2π2c3. Again βα

represents a power-balance (conjugate-matching) condition
and takes the value 1 for nonradiative or total LDOS and 1/4
for the radiative LDOS. Equation 7 includes the highest-order
(∼1/d3) term from the incident electric field; lower-order terms
(∼1/d2,1/d) are generally negligible in the high-enhancement
regimes of interest, as discussed quantitatively in ref 15. The 3/
8 coefficient in eq 7 is for the common case in which the
surface is separated from the emitter by a separating plane; if
the scattering body surrounds the emitter across a solid angle
Ω, the bound in eq 7 is multiplied by 4Ω. Equation 7 provides a
general answer to the question of how efficient and effective a
2D optical antenna can be.
Radiative heat transfer (RHT), in which a warm body

transfers energy to a colder one via photon exchange, is also
subject to optical-response bounds. It has long been
known21−23 that near-field RHT can surpass the blackbody
limit, as evanescent tunneling can outpace radiative exchange.
Yet general limits to the process in conventional 3D materials
had been unknown until our recent work.51 The total RHT
rate, H, is given by the net flux from one body at temperature
T1 to another at temperature T2, typically expressed as (ref 25)
H1→2 = ∫ 0

∞Φ(ω)[Θ(ω,T1) − Θ(ω, T2)]dω, where Φ(ω) is a
temperature-independent energy flux and Θ is the Planck
spectrum. The flux Φ is the power absorbed by the second
body, having been emitted from the first, such that it is similar
to the scattering problem bounded by eq 6. A key distinction is
that the (incoherent) sources are in the interior of one of the
scattering bodies, invalidating the conventional optical theorem.
This difficulty can be circumvented by breaking the flux transfer
into two scattering problems, connected by a generalized52

reciprocity relation (the material conductivity does not need to
be reciprocal), as outlined in ref 51. The key distinction in the
case of 2D materials is the dimensionality of the domain over
which the field intensities are evaluated, which for bodies with
identical conductivities σ leads to the bound

σ σ σΦ
Φ

≤ † −

k d
Z

3
2( )

(Re )
BB 0

4 0
2 1

2

2

(8)

where d is the minimum separation distance between the
arbitrarily shaped bodies, ΦBB = k0

2A/4π2 is the blackbody limit
(for infinite area A),25 and the conductivity term is squared due
to potential contributions from each body (see Supporting
Information). As for the LDOS bounds, eq 8 assumes a
separating plane between the bodies; corrugated surfaces that
are interlaced (but nontouching) have bounds of the same
functional form but with different numerical prefactors. An
interesting 2D-specific aspect of eqs 7 and 8 is that they exhibit
identical 1/d4 distance dependencies, whereas for 3D bodies,
RHT increases more slowly for smaller separations (∼1/d2)
than does the LDOS (∼1/d3).
The fundamental limits of eqs 6−8 share a common

dimensionless material “figure of merit” (FOM),
Z0∥σ†(Re σ)−1σ∥2. The FOM, which simplifies to Z0|σ|

2/Re σ
for a scalar conductivity, captures the intrinsic trade-offs
between high conductivity for large response and high losses
that dissipate enhancement, and can be used to identify optimal
materials. In Figure 1, we plot the FOM across a range of
frequencies, using experimentally measured or analytically
modeled material data for common 2D materials of interest:
graphene, for various Fermi levels,53 magnetic biasing,54 and
AA-type bilayer stacking55 (at 300 K), hBN,56 MoS2,

57 black
phosphourous (BP),11 Bi2Se3 (at THz frequencies58), and
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metals Ag, Al, and Au, all taken to have 2D conductivities
dictated by a combination39 of their bulk properties and their
interlayer atomic spacing. Strongly doped graphene (EF = 0.6
eV) offers the largest possible response across the infrared,
whereas 2D Ag tends to be better in the visible. At terahertz
(THz) frequencies, where graphene’s potential is well-under-
stood,59−61 the topological insulator Bi2Se3 shows promise for
even larger response. More broadly, the simple material FOM,
|σ|2/Re σ or its anistropic generalization ∥σ†(Re σ)−1σ∥, offers a
metric for evaluating emerging (e.g., silicene,62 phosphor-
ene63,64) and yet-to-be-discovered 2D materials.
In the following we specialize our considerations to

graphene, the standard-bearer for 2D materials, to examine
the degree to which the bounds of eqs 6−8 can be attained in
specific structures. We adopt the conventional local description,
including intra- and interband dispersion. Appropriate mod-
ifications37,53 are included to account for a finite intrinsic
damping rate, γ = 1/τ = (1012 eV/s)/EF, which is taken as
Fermi-level-dependent (corresponding to a Fermi-level-inde-
pendent mobility), with a magnitude mirroring that which was
adopted in ref 37. Figure 2 shows the cross-section bounds
(dashed lines), per eq 6, alongside graphene disks (with EF =
0.4 eV) that approach the bounds at frequencies across the
infrared. For simplicity, we fix the aspect ratio of the disks at 2:1
and simply reduce their size to increase their resonant
frequency; each disk achieves ≈ 85% of its extinction cross-
section bound. The disk diameters are kept greater than 10 nm
to ensure the validity of our local description. We employ a fast
quasistatic solver65 to compute the response of the ellipses,
which is verified with a free-software implementation66 of the
boundary element method (BEM)67 for the full electrodynamic
problem with the surface conductivity incorporated as a

modified boundary condition.45 If edge scattering, or any
other defect, were to increase the damping rate, such an
increase could be seamlessly incorporated in the bounds of eqs
6−8) through direct modification of the conductivity. In the
Supporting Information, we show that with two extra
geometrical degrees of freedom (e.g., a “pinched ellipse”),
one can reach >99.6% of the bound. The cross-section bounds
can also be used as bounds on the fill fraction of graphene
required for perfect absorption in a planar arrangement, and
they suggest the potential for an order-of-magnitude reduction
relative to the best known results.5 Conversely, such room for
improvement could be used to significantly increase the perfect-
absorption bandwidth beyond the modern state-of-the-art.
The bounds simplify analytically at the low- and high-

frequency extremes. In these regimes, graphene’s isotropic
conductivity is real-valued and comprises simple material and
fundamental constants, such that the material FOM is
approximatel

σ σ σ σ
α

γ
ω γ

πα ω

∥ ∥ ≈ ≈ ℏ
≪

≫ ℏ

† −

⎧
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⎩⎪

⎛
⎝⎜

⎞
⎠⎟Z Z

E

E

(Re )
4

2 /
0

1
2 0

F

F

(9)

The low-frequency proportionality to EF/ℏγ arises as a
consequence of the intraband contributions to the conductivity
in contrast to the interband dominance at high frequencies.
Interband contributions to the conductivity are often ignored at
energies below the Fermi level, but even at those energies they
are responsible for a sizable fraction of the loss rate, thus
causing the quadratic roll-off (derived in Supporting
Information) of the maximum efficiency seen on the left-
hand side of Figure 2.
Famously, at high frequencies a uniform sheet of graphene

has a scattering efficiency σ/A ≈ πα (refs 68−70). Interestingly,

Figure 1. A simple material FOM, Z0∥σ†(Re σ)−1σ∥2 for conductivity
σ, dictates the maximum optical response that can be generated in 2D
materials. Experimentally tabulated or analytically modeled optical data
can be compared to assess optimal materials as they emerge. Here, we
compare: graphene at different Fermi levels (solid black lines) and
magnetic-biasing (dashed black line), AA-stacked bilayer graphene
(dark red), hBN (green), MoS2 (purple), the anisotropic conductivity
components of black phosphorus (BP, pink and dark purple), and
three 2D metals, Al (red), Ag (blue), and Au (gold). High-Fermi-level
graphene and 2D silver offer the largest possible responses at infrared
and visible wavelengths, respectively. The inset compares graphene at
THz frequencies to the topological insulator Bi2Se3, which can have a
surprisingly large FOM.

Figure 2. Upper limits (dashed lines) to the extinction cross-section of
graphene scatterers of varying Fermi level, patterned into any shape,
alongside the computed response of elliptical graphene disks of varying
sizes for EF = 0.4 eV (green, solid). The bounds, per eq 6, depend on
graphene’s 2D conductivity and incorporate the extent to which losses
can be overcome. The disks reach within ≈85% of the bounds, and in
the Supporting Information we show that slightly more exotic shapes
can reach >99% of the bounds. Simple asymptotic expressions for the
bounds emerge at low (dash−dot lines) and high frequencies. In the
high-frequency limit, the limits converge to πα and are thereby
reached with a simple flat sheet (inset).
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Figure 2 and eq 9 reveal that πα is the largest possible scattering
efficiency for any shape or configuration of graphene at those
frequencies. Per the incident-field discussion above, it is
possible to increase the absolute absorption of a plane wave
at those frequencies by structuring the background (e.g., with a
photonic-crystal slab supporting the graphene), but the
percentage of the background field intensity that can be
absorbed by the graphene is necessarily ≤ πα, no matter how
the graphene is structured. The right-hand side of Figure 2
shows the bounds for each Fermi level converging to πα, with
the inset magnifying the high-energy region and showing that
the response of a flat sheet indeed reaches the bound.
The near-field LDOS and RHT limits are more challenging

to attain. We study the LDOS near a flat sheet of graphene, the
most common 2D platform for spontaneous-emission enhance-
ments to date,9,71,72 and show that there is a large performance
gap between the flat-sheet response and the fundamental limits
of eq 7. There are two key factors that control the near-field
bounds (for both LDOS and RHT): the material FOM |σ|2/
Re σ, and a “near-field enhancement factor” 1/d4, for emitter−
sheet distance d. The 1/d4 near-field enhancement factor is
particularly interesting, because it increases more rapidly than
in 3D materials (for which the LDOS15 and RHT51 bounds
scale as 1/d3 and 1/d2, respectively). In Figure 3, we show the

LDOS as a function of the emitter−graphene separation, for a
fixed Fermi level EF = 0.4 eV and a range of frequencies
(colored solid lines). The bounds for each frequency are shown
in the colored dashed lines, and the ratio of the LDOS ρ to the
LDOS bound ρbound is shown in the inset. For low and
moderate frequencies, there is an ideal distance at which the
LDOS most closely approaches its frequency-dependent
bound, whereas the high-frequency regime (e.g., ℏω = 0.7
eV) is almost distance-insensitive due to high losses.
Figure 3 shows two asymptotic distance-scaling trends. First,

at high frequencies and/or large separations (50 nm to 1 μm),
the LDOS enhancement scales as 1/(k0d)

4. We show in the

Supporting Information that in this regime the LDOS further
exhibits the material-enhancement factor |σ|2/Re σ, falling short
of the bound only by a factor of 2. In this regime, the LDOS is
dominated by a “lossy-background” contribution,71 which is
insensitive to details of the plasmonic mode, and due instead
predominantly to interband absorption in graphene (permitted
even below 2EF for nonzero temperatures). Of more interest
may be the opposite regime, higher frequencies at smaller
separations, which are known73 to have reduced distance
dependencies. It is crucial to note that the bounds presented in
this Letter are not scaling laws; instead, at each frequency and
distance they represent independent response limits. We see in
Figure 3 that for each individual frequency, ρ/ρ0 flattens toward
a constant value at very small distances, because the
corresponding plasmon surface-parallel wavenumber is smaller
than 1/d and does not change; however, the envelope formed
over many frequencies (for a given separation d) shows a 1/
(k0d)

3 dependence as higher-wavenumber plasmons are
accessed at smaller distances. This suggests a simple potential
approach to reach the bound: instead of finding a geometrical
configuration that approaches the bound at all frequencies and
separations, concentrate on finding a structure that reaches the
bound at a single frequency and separation of interest. A
“family” of structures that combine to approach the bounds
over a large parameter regime may then naturally emerge.
Near-field RHT shows similar characteristics, in which the

bounds may be approached with flat graphene sheets at specific
energy, Fermi-level, and separation-distance parameter combi-
nations. As a counterpart to the LDOS representation of Figure
3, in Figure 4 we fix the separation distance at 10 nm and plot

the frequency-dependent RHT74 for three Fermi levels. The
respective bounds, from eq 8, show the same “dip” as seen in
the inset of Figure 2, which occurs at the frequency where the
imaginary part of the conductivity crosses zero. At these
frequencies, the RHT between flat sheets can approach the
bounds. However, at other frequencies where the potential

Figure 3. Comparison of the LDOS above a flat graphene sheet
(dashed lines) to the LDOS bounds for any structure (solid lines), for
multiple frequencies (colored lines) and as a function of the emitter−
graphene separation distance d (with EF = 0.4 eV). For larger
separations and higher frequencies, the LDOS above a flat sheet
follows the ideal ∼1/d4 scaling, but at shorter separations and lower
frequencies (where the response is potentially largest), the optimal-
frequency response follows a ∼1/d3 envelope. The inset shows the
ratio of the flat-sheet LDOS to the upper bound, showing that there is
the potential for 1−2 orders of magnitude improvement.

Figure 4. Radiative heat flux between two graphene structures (at T =
300 K and d = 10 nm) for flat sheets (solid lines) and for the arbitrary-
shape analytical bounds (dotted lines). For a Fermi level 0.5 eV, the
flat sheets fall short of the bounds by 104 at their peak due to near-field
interference effects between the sheets. The interference effects do not
arise between dipolar circles (inset), whereby the bound is nearly
achieved (for R = 5 nm and d = 30 nm). The discrepancy between the
disk and flat-sheet RHT rates suggests the possibility of significant
improvement via patterning.
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RHT is significantly larger, the flat sheets fall short by orders of
magnitude, as depicted in Figure 4 at EF = 0.5 eV. The flat-sheet
case falls short due to near-field interference effects: as the
sheets approach each other, the plasmonic modes at each
interface interact with each other, creating a level-splitting effect
that reduces their maximum transmission to only a narrow
band of wavevectors.15 By contrast, for two dipolar circles in a
quasistatic approximation (Figure 4 inset), the RHT between
the two bodies can approach its respective bound. These
examples suggest that patterned graphene sheets, designed to
control and optimize their two-body interference patterns,
represent a promising approach toward reaching the bounds
and thereby unprecedented levels of radiative heat transfer. In
the Supporting Information, we show that achieving RHT at
the level of the bound, even over the narrow bandwidths
associated with plasmonic resonances, would enable radiative
transfer to be greater than conductive transfer through air at
separations of almost 1 μm, significantly larger than is currently
possible.15

Having examined the response of graphene structures in the
local-conductivity approximation, we now reconsider nonlocal
conductivity models. For structures in the 2−10 nm size range,
below the local-conductivity regime but large enough to not
necessitate fully quantum-mechanical models, hydrodynamic
conductivity equations,42,43,47 or similar gradient-based models
of nonlocality,54,75 can provide an improved account of the
optical response. In a hydrodynamic model, the currents behave
akin to fluids with a diffusion constant D and convection
constant β (both real-valued) with a current−field relation
given by43

ωω
β γ ω σ−
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where σloc, ωp, and γ are the local conductivity, plasma
frequency, and damping rate of the 2D material, respectively.
Per eq 4, the 2D-material response bounds depend only on the
Hermitian part of the operator, denoted by an underbrace in
eq 10. Before deriving bounds dependent on the hydrodynamic
parameters, we note that the grad−div hydrodynamic term in
eq 10 cannot increase the maximum optical response. The
operator −∇∇· is a positive semidefinite Hermitian operator
(for the usual L2-space overlap-integral inner product), shown
by integration by parts in conjunction with the no-spillout
boundary condition. The Hermiticity of the grad−div operator
means that the Hermitian part of is given by

σ= + = − ∇∇·+
ω

† −Re ( )/2 ReD
loc

1

p
2 . Because −∇∇·is

a positive-semidefinite addition to the positive-semidefinite
term Re σ l o c

− 1 , σ σ σ≤ = | |− − −(Re ) (Re ) /Re1
loc

1 1
loc

2
loc.

Thus, the nonlocal response is subject to the bound imposed
by the underlying local conductivity, demonstrating that
nonlocal effects of this type cannot surpass the local-
conductivity response explored in depth above.
We can further show that hydrodynamic nonlocality

necessarily reduces the maximum achievable optical response
in a given 2D material, by exploiting the quasistatic nature of
electromagnetic interactions at the length scales for which
nonlocal effects manifest. The key insight required to derive
bounds subject to the nonlocal current−field relation, eq 10, is
that the absorbed power can be written as a quadratic form of

both the currents K as well as ∇·K (proportional to the induced
charge): Pabs = (1/2)Re ∫ A K*·E = 1/2 ∫ A[a (∇·K*)(∇·K) +
bK*·K], where a = D/ωp

2 and b = Re(σloc
−1). Similarly, the

extinction can be written as a linear function of either K or ∇·K
(exploiting the quasistatic nature of the fields), such that Pabs ≤
Pext offers two convex constraints for the generalized nonlocal-
conductivity problem. We defer to the Supporting Information
for a detailed derivation of general figures of merit under this
constraint, and state a simplified version of the result for the
extinction cross-section. The additional ∇·K constraint
introduces a size dependence in the bound, in the form of a
“radius” r that is the smallest bounding sphere of the scatterer
along the direction of the incident-field polarization. Defining a

plasmonic “diffusion” length ω=l Dc /D p
2 (for speed of light

c), the variational-calculus approach outlined above yields an
analogue of eq 6 in the presence of a hydrodynamic nonlocality
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Equation 11 has an appealing, intuitive interpretation: the
cross-section of a scatterer is bounded above by a combination
of the local-conductivity bound and a nonlocal contribution
proportional to the square of the ratio of the size of the
scatterer to the “diffusion” length. Thus, as the size of the
particle approaches lD, and goes below it, there must be a
significant reduction in the maximal attainable optical response.
There is ambiguity as to what the exact value of D, or
equivalently lD, should be in 2D materials such as graphene; the
bounds developed serve as an impetus for future measurement
or simulation, to delineate the sizes at which the local/nonlocal
transition occurs. Conversely, because the bound shows a
dramatic reduction at sizes below lD, eq 11 can serve as a means
to extract this nonlocal property of any 2D material from
experimental measurements.
General limits serve to contextualize a large design space,

pointing toward phenomena and performance levels that may
be possible and clarifying basic limiting factors. Here we have
presented a set of optical-response bounds for 2D materials,
generalizing recent 3D-material bounds15,51 to incorporate both
local and nonlocal models of 2D conductivities. We further
studied the response of standard graphene structures, ellipses
and sheets, relative to their respective bounds, showing that the
far-field absorption efficiency bounds can be reliably
approached within 10%, but that the near-field bounds are
approached only in specific parameter regimes, suggesting the
possibility for design to enable new levels of response. The
figure of merit ∥σ†(Re σ)−1σ∥ can serve to evaluate new 2D
materials as they are discovered, and their optical properties are
measured. Our results point to a few directions where future
work may further clarify the landscape for 2D-material optics.
One topic of current interest is in patterned gain and loss76,77

(esp. -symmetry78−80), which exhibits a variety of novel
behaviors, from exceptional points to loss-induced trans-
parency. Our bounds depend on passivity, which excludes
gain materials, but in fact the bounds only require passivity on
average, that is, averaged over the structure. Thus, eqs 4−8
should be extensible to patterned gain−loss structures. A
second area for future work is in exploration of quantum
models of the operator. We have shown here explicit bounds
for the cases of local and hydrodynamic conductivities, but
there is also significant interest in quantum descriptions of the
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response. Through, for example, density functional theory,81

analytical bounds in such cases may lead to a continuum of
optical-response limits across classical, semiclassical, and
quantum regimes.
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Domínguez, A. I.; Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R.
Science 2012, 337, 1072−1074.
(43) Mortensen, N. A.; Raza, S.; Wubs, M.; Søndergaard, T.;
Bozhevolnyi, S. I. Nat. Commun. 2014, 5, 3809.
(44) Welters, A.; Avniel, Y.; Johnson, S. G. Phys. Rev. A: At., Mol.,
Opt. Phys. 2014, 90, 023847.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.7b02007
Nano Lett. 2017, 17, 5408−5415

5414

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.7b02007
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.7b02007
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.7b02007/suppl_file/nl7b02007_si_002.pdf
mailto:owen.miller@yale.edu
http://orcid.org/0000-0003-2745-2392
http://orcid.org/0000-0001-9435-0201
http://dx.doi.org/10.1021/acs.nanolett.7b02007
http://pubs.acs.org/action/showLinks?pmid=24787630&crossref=10.1038%2Fncomms4809&coi=1%3ACAS%3A280%3ADC%252BC2cnptlGjtw%253D%253D&citationId=p_n_95_1
http://pubs.acs.org/action/showLinks?pmid=20643879&crossref=10.1083%2Fjcb.201002018&coi=1%3ACAS%3A528%3ADC%252BC3cXhtVGlur%252FK&citationId=p_n_68_1
http://pubs.acs.org/action/showLinks?pmid=27418505&crossref=10.1126%2Fscience.aaf6308&coi=1%3ACAS%3A528%3ADC%252BC28XhtFCkur7I&citationId=p_n_75_1
http://pubs.acs.org/action/showLinks?crossref=10.1002%2Fadma.200803812&coi=1%3ACAS%3A528%3ADC%252BD1MXhtV2lt7bN&citationId=p_n_7_1
http://pubs.acs.org/action/showLinks?pmid=22936772&crossref=10.1126%2Fscience.1224823&coi=1%3ACAS%3A528%3ADC%252BC38Xht1GrsbfP&citationId=p_n_92_1
http://pubs.acs.org/action/showLinks?pmid=19850864&crossref=10.1073%2Fpnas.0905217106&coi=1%3ACAS%3A528%3ADC%252BD1MXhsVKjtLbE&citationId=p_n_65_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevE.58.3909&coi=1%3ACAS%3A528%3ADyaK1cXlsl2jt7w%253D&citationId=p_n_38_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevE.58.3909&coi=1%3ACAS%3A528%3ADyaK1cXlsl2jt7w%253D&citationId=p_n_38_1
http://pubs.acs.org/action/showLinks?crossref=10.1119%2F1.10324&citationId=p_n_28_1
http://pubs.acs.org/action/showLinks?pmid=17330084&crossref=10.1038%2Fnmat1849&coi=1%3ACAS%3A528%3ADC%252BD2sXit1Khtrg%253D&citationId=p_n_4_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevLett.78.1667&coi=1%3ACAS%3A528%3ADyaK2sXhsV2jtb4%253D&citationId=p_n_62_1
http://pubs.acs.org/action/showLinks?pmid=27893724&crossref=10.1038%2Fnmat4792&citationId=p_n_25_1
http://pubs.acs.org/action/showLinks?pmid=16027370&crossref=10.1073%2Fpnas.0502848102&coi=1%3ACAS%3A528%3ADC%252BD2MXntVSit7g%253D&citationId=p_n_1_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevE.71.056610&coi=1%3ACAS%3A528%3ADC%252BD2MXltVyjsb8%253D&citationId=p_n_32_1
http://pubs.acs.org/action/showLinks?pmid=25774774&crossref=10.1039%2FC4FD00216D&coi=1%3ACAS%3A528%3ADC%252BC2MXksVCku74%253D&citationId=p_n_87_1
http://pubs.acs.org/action/showLinks?crossref=10.1038%2Fnphoton.2012.27&coi=1%3ACAS%3A528%3ADC%252BC38Xjt1eltro%253D&citationId=p_n_84_1
http://pubs.acs.org/action/showLinks?crossref=10.1038%2Fnphoton.2012.27&coi=1%3ACAS%3A528%3ADC%252BC38Xjt1eltro%253D&citationId=p_n_84_1
http://pubs.acs.org/action/showLinks?pmid=22712094&crossref=10.1364%2FOE.20.00A366&coi=1%3ACAS%3A528%3ADC%252BC38Xnslyntbk%253D&citationId=p_n_74_1
http://pubs.acs.org/action/showLinks?crossref=10.1088%2F0953-8984%2F11%2F35%2F301&coi=1%3ACAS%3A528%3ADyaK1MXmtFGrsbc%253D&citationId=p_n_47_1
http://pubs.acs.org/action/showLinks?crossref=10.1109%2F8.884491&citationId=p_n_91_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevB.68.245405&coi=1%3ACAS%3A528%3ADC%252BD2cXmvVWhtA%253D%253D&citationId=p_n_37_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevB.68.245405&coi=1%3ACAS%3A528%3ADC%252BD2cXmvVWhtA%253D%253D&citationId=p_n_37_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fph400147y&coi=1%3ACAS%3A528%3ADC%252BC2cXitFertbs%253D&citationId=p_n_81_1
http://pubs.acs.org/action/showLinks?pmid=20168344&crossref=10.1038%2Fnmat2629&coi=1%3ACAS%3A528%3ADC%252BC3cXitFGltbg%253D&citationId=p_n_71_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fph400090p&coi=1%3ACAS%3A528%3ADC%252BC2cXjsVShtbo%253D&citationId=p_n_17_1
http://pubs.acs.org/action/showLinks?crossref=10.1126%2Fscience.aag1992&citationId=p_n_24_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevE.69.057601&coi=1%3ACAS%3A528%3ADC%252BD2cXks1ehtbY%253D&citationId=p_n_41_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fnl201771h&coi=1%3ACAS%3A528%3ADC%252BC3MXptlelt74%253D&citationId=p_n_21_1
http://pubs.acs.org/action/showLinks?crossref=10.1038%2Flsa.2016.52&citationId=p_n_79_1
http://pubs.acs.org/action/showLinks?crossref=10.1038%2Flsa.2016.52&citationId=p_n_79_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevA.90.023847&coi=1%3ACAS%3A528%3ADC%252BC2cXhs1ais73M&citationId=p_n_96_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevA.90.023847&coi=1%3ACAS%3A528%3ADC%252BC2cXhs1ais73M&citationId=p_n_96_1
http://pubs.acs.org/action/showLinks?pmid=9027306&crossref=10.1126%2Fscience.275.5303.1102&coi=1%3ACAS%3A528%3ADyaK2sXhtlGlsL4%253D&citationId=p_n_59_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FRevModPhys.79.1291&coi=1%3ACAS%3A528%3ADC%252BD1cXisFCjtL8%253D&citationId=p_n_56_1
http://pubs.acs.org/action/showLinks?crossref=10.1007%2F978-3-642-61351-7&citationId=p_n_46_1
http://pubs.acs.org/action/showLinks?pmid=24724651&crossref=10.1103%2FPhysRevLett.112.123903&coi=1%3ACAS%3A528%3ADC%252BC2cXmsVWqur0%253D&citationId=p_n_90_1
http://pubs.acs.org/action/showLinks?crossref=10.1007%2F978-3-642-61351-7&citationId=p_n_46_1
http://pubs.acs.org/action/showLinks?crossref=10.1017%2FCBO9780511794193&citationId=p_n_36_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.surfrep.2004.12.002&coi=1%3ACAS%3A528%3ADC%252BD2MXjs1CmtLY%253D&citationId=p_n_53_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.surfrep.2004.12.002&coi=1%3ACAS%3A528%3ADC%252BD2MXjs1CmtLY%253D&citationId=p_n_53_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevB.4.3303&citationId=p_n_43_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevB.86.165416&coi=1%3ACAS%3A528%3ADC%252BC38XhslylsLbK&citationId=p_n_16_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevB.86.165416&coi=1%3ACAS%3A528%3ADC%252BC38XhslylsLbK&citationId=p_n_16_1
http://pubs.acs.org/action/showLinks?pmid=26906994&crossref=10.1364%2FOE.24.003329&coi=1%3ACAS%3A280%3ADC%252BC28jjsF2ntQ%253D%253D&citationId=p_n_33_1
http://pubs.acs.org/action/showLinks?crossref=10.1080%2F10893950290053321&citationId=p_n_50_1
http://pubs.acs.org/action/showLinks?crossref=10.1080%2F10893950290053321&citationId=p_n_50_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevLett.108.047401&citationId=p_n_13_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevLett.108.047401&citationId=p_n_13_1
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.4906996&coi=1%3ACAS%3A528%3ADC%252BC2MXhvVeltbs%253D&citationId=p_n_20_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fnn100780v&coi=1%3ACAS%3A528%3ADC%252BC3cXlsFKmsb0%253D&citationId=p_n_10_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevB.90.165409&coi=1%3ACAS%3A528%3ADC%252BC2MXptlOhsw%253D%253D&citationId=p_n_78_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevB.90.165409&coi=1%3ACAS%3A528%3ADC%252BC2MXptlOhsw%253D%253D&citationId=p_n_78_1


(45) Reid, M. T. H.; Johnson, S. G. IEEE Trans. Antennas Propag.
2015, 63, 3588−3598.
(46) Yamamoto, T.; Noguchi, T.; Watanabe, K. Phys. Rev. B: Condens.
Matter Mater. Phys. 2006, 74, 121409.
(47) Raza, S.; Bozhevolnyi, S. I.; Wubs, M. J. Phys.: Condens. Matter
2015, 27, 183204.
(48) Stutzman, W. L.; Thiele, G. A. Antenna theory and design, 3rd
ed.; John Wiley & Sons, 2012.
(49) Trefethen, L. N.; Bau, D. Numerical Linear Algebra; Society for
Industrial and Applied Mathematics: Philadelphia, PA, 1997.
(50) Christensen, T.; Jauho, A. P.; Wubs, M.; Mortensen, N. A. Phys.
Rev. B: Condens. Matter Mater. Phys. 2015, 91, 125414.
(51) Miller, O. D.; Johnson, S. G.; Rodriguez, A. W. Phys. Rev. Lett.
2015, 115, 204302.
(52) Kong, J. A. Proc. IEEE 1972, 60, 1036−1046.
(53) Jablan, M.; Buljan, H.; Soljacǐc,́ M. Phys. Rev. B: Condens. Matter
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