
LETTERS
PUBLISHED ONLINE: 23 FEBRUARY 2015 | DOI: 10.1038/NCLIMATE2531

Quantifying the likelihood of a continued hiatus in
global warming
C. D. Roberts1*, M. D. Palmer1, D. McNeall1 and M. Collins2

Since the end of the twentieth century, global mean surface
temperature has not risen as rapidly as predicted by global
climatemodels1–3 (GCMs).This discrepancyhasbecomeknown
as the global warming ‘hiatus’ and a variety ofmechanisms1,4–17
have been proposed to explain the observed slowdown in
warming. Focusing on internally generated variability, we
use pre-industrial control simulations from an observationally
constrained ensemble of GCMs and a statistical approach
to evaluate the expected frequency and characteristics of
variability-driven hiatus periods and their likelihood of future
continuation. Given an expected forced warming trend of
∼0.2K per decade, our constrained ensemble of GCMs implies
that the probability of a variability-driven 10-year hiatus is
∼10%, but less than 1% for a 20-year hiatus. Although the
absoluteprobability of a20-yearhiatus is small, theprobability
that an existing 15-year hiatus will continue another five years
is much higher (up to 25%). Therefore, given the recognized
contribution of internal climate variability to the reduced rate
of global warming during the past 15 years, we should not
be surprised if the current hiatus continues until the end of
the decade. Following the termination of a variability-driven
hiatus, we also show that there is an increased likelihood of
accelerated global warming associated with release of heat
from the sub-surface ocean and a reversal of the phase of
decadal variability in the Pacific Ocean.

The unexpectedly modest rise in global mean surface
temperature (GMST) over the past decade or so, often referred to as
the global warming ‘hiatus’, has attracted considerable interest from
the scientific community and wider public1–3,8,18. Although recent
observational studies have shown that incomplete spatial sampling
may play a role19, this cannot account for the discrepancy between
the observed trend (−0.04 to 0.04K per decade, for the decade
ending in 2013) and the central estimate from climate models (0.2 K
per decade; Fig. 1). However, several studies have shown that hiatus
decades are not inconsistent with our expectations of internal
climate variability1,8,10,11,20 and do not necessarily imply a reduction
in the rate of energy accumulation in the Earth system10,21,22.

The latest Intergovernmental Panel on Climate Change (IPCC)
assessment report2 attributed the hiatus to some combination of
external climatic forcings that are not adequately represented in
model simulations of the recent period and the internal climate
variability that is intrinsic to individual model simulations
but largely absent from the multi-model mean. Mechanisms
proposed to explain the hiatus include aerosol emissions from
modest volcanic eruptions6,12,13,16,23, a delayed response to the
Mount Pinatubo eruption24, the unexpectedly prolonged solar
minimum7,14,24, stratospheric water vapour changes15, increases in
anthropogenic sulphate aerosol emissions14,16,25, internal decadal
variability in the Pacific and/or high-latitude oceans9–11,26,27,
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Figure 1 | Observed and simulated GMST. a, GMST anomalies in
observational data sets (red; see Methods for details), CMIP5 historical
and RCP4.5 scenario ensemble members (grey) and single-model
ensemble means smoothed with a 10-year low-pass filter (blue). b, Range
(observations) and 5th–95th percentiles (CMIP5 models) of rolling 10-year
trends in GMST for the data sets plotted in a.

and externally forced and/or internally generated wind-driven
rearrangement of heat in the oceans4,5. Several studies have
previously commented on the likelihood of a warming hiatus
and the potential for a subsequent accelerated warming5,8,17,20,27,28;
however, none has considered the likelihood of the present hiatus
continuing into the future using the framework of conditional
probabilities or evaluated the conditions following the termination
of a hiatus.
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Probability of GMST trends due to
internal variability (all models)
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Figure 2 | Probability of GMST trends due to internal variability. a, Multi-model probability of GMST trends due to internal variability less than or equal to
the specified values (all models). For example, the probability of a−0.25 K per decade trend lasting 10 years is about 0.05 (5%). This probability drops to
about 0.01 (1%) for trend length of 14 years. b, Conditional probability of GMST trends continuing 5 more years, given the existence of a trend in the
preceding N years. For example, if a−0.25 K per decade trend has been observed for 12 years, the probability of it continuing for another 5 years is about
0.10 (10%). c,d, The same as in a,b, but calculated using the observationally constrained subset of models identified in Supplementary Table 1 and Fig. 3.

Here, we consider how long the observed hiatus might last
owing to internal variability alone and characterize both the spatial
patterns of surface temperature change, and the likelihood of
accelerated GMST rise, following the termination of a hiatus. The
results of our study are based on 23 multi-century pre-industrial
control simulations from Phase 5 of the Coupled Climate Model
Intercomparison Project CMIP5 (see Methods). These physically
based model simulations of climate variability are combined with
statistical models (autoregressive moving-average (ARMA)models,
seeMethods) to quantify both absolute and conditional probabilities
of a hiatus event continuing for a given number of years. In addition,
we repeat our analysis with a subset of climate models that have the
most realistic representation of Pacific variability—an area of the
ocean that has played a key role in the observed hiatus5,9.

We assume that the time evolution of GMST can be considered
a linear combination of a ‘signal’ due to external climate forcings
superimposed on ‘noise’ that is consistent with variability in pre-
industrial control simulations. In addition, we assume that the rate
of warming due to external forcings can be considered constant
on decadal timescales. These assumptions are reasonable when
considering the evolution of GMST during the early twenty-
first century (see Supplementary Methods). In this paradigm, the
probability that internal variability will offset a warming rate of, for
example, 0.2 K per decade for the current climate, is the same as the
probability that internal variability will cause a global temperature
trend <−0.2 K per decade in a pre-industrial control experiment.
We note that if greenhouse gas concentrations continue to increase
during the twenty-first century, then periods of zero warming will

become less likely in the future28. However, periods with anomalous
rates of cooling/warming will continue to arise from internal
variability and it is on these events that we focus our analysis.
We use the following terminology. ‘Hiatus’ refers to a period of
suppressed warming (GMST change), or even zero trend or cooling,
when a forced warming trend is expected. Assuming linearity, it can
be equated with an anomalous cooling in a pre-industrial control
simulation that exceeds some threshold value, superimposed on
a forced warming trend. ‘Continued hiatus’ refers to an existing
hiatus that experiences continued muted GMST response of the
same (or greater) magnitude. ‘Accelerated warming’ refers to a
period of anomalous warming that exceeds that which would be
expected from the forced signal. Such a period may be equated with
a warming trend that exceeds the magnitude of cooling during a
preceding hiatus in a pre-industrial control simulation as in our
definition of a hiatus.

We estimate the multi-model mean probability (see Methods) of
GMST cooling trends of −0.1 to −0.3 K per decade—sufficient to
offset a long-term warming rate of the same magnitude—arising
from internal variability as a function of trend length (Fig. 2a).
This range of trendmagnitudes is chosen to account for uncertainty
in the transient climate response (TCR) to external forcings (see
Methods). Given an expected warming rate of 0.2 K per decade,
our multi-model probability for a 10-year warming hiatus due to
internal variability is 9% with a range across models of 0–17%
(Table 1 and Supplementary Fig. 1). For a 20-year hiatus (that is,
a 20-year period with a trend<−0.2 K per decade) the multi-model
probability is <1% (Fig. 2a) and the range across models is 0–2%
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Table 1 | Selected absolute and conditional probabilities
extracted from Fig. 2 for trends in GMST su�cient to o�set
a warming rate of 0.2 K per decade.

All CMIP5 models Constrained ensemble

5 years 28% (15–33%) 30% (27–33%)
10 years 9% (0–17%) 10% (5–17%)
20 years <1% (0–2%) <1% (0–2%)
5 years (following an
existing 15-year hiatus)

16% (0–29%) 15% (0–25%)

Values are given as multi-model means with the range across models in parentheses.

(Table 1). The range of probabilities across models is a consequence
of differences in the characteristics of simulated internal GMST
variability (Supplementary Fig. 3). Notably, a 20-year hiatus due
to internal variability alone is very unlikely, but is not outside the
range of internal variability as simulated by GCMs (Supplementary
Figs 1 and 2).

However, we argue that the expected frequency of a hiatus
occurring in any given period is not the most useful quantity for
communicating the chance that the current warming hiatus will
extend into the future. To evaluate the fraction of hiatus events of
a given length that will continue for a specified period, we propose
the use of conditional probabilities (Fig. 2b). For example, if internal
variability has offset warming of 0.2 K per decade for a period of
15 years, our multi-model mean estimate of the fraction of events
that will continue to offset warming for another 5 years is 16%,
with a multi-model range of 0–29% (Table 1). In addition, for trend
lengths of 5 to 20 years, the probabilities in Fig. 2b are surprisingly
insensitive to the existing trend length. This is a consequence of
the year-to-year persistence of GMST anomalies associated with
internal variability (Supplementary Fig. 3). If internal variability
has been the dominant driver of the hiatus since 2000, and GCMs
are representative of the real world, this ensemble of models
indicates that there is a non-negligible probability (that is, between
0 and 29% for an expected warming rate of 0.2 K per decade)
of the current hiatus continuing for 5 more years. Failure to
adequately communicate this possibility could lead to allegations of
overconfidence in GCM projections, especially if the existing hiatus
continues until 2020 and beyond.

To investigate the spatial changes associated with hiatus events in
models, we identify 128 decadeswith global cooling less than−0.2 K
per decade from 23 CMIP5 pre-industrial control simulations. The
mean characteristics of these events share many of the previously
identified features of warming slow-downs in observations4,5,9 and
models10,11, including a pattern of surface temperature change
resembling the negative phase of the Pacific Decadal Oscillation
(PDO), accelerated Pacific trade winds and spin-up of the sub-
tropical gyres, sub-surface warming in regions of thermocline
convergence (Supplementary Fig. 4), and increased ocean heat
uptake beneath the ocean mixed layer (Fig. 4).

However, we emphasize that the composite mean is an inad-
equate description of any single model or event. Single-model
composites and individual events show marked differences in the
magnitude and patterns of near-surface temperature change (Sup-
plementary Fig. 5), the locations and magnitude of heat conver-
gence in the thermocline and regions of deep-water formation
(Supplementary Figs 6 and 7), the relative importance of ocean heat
redistribution and top-of-atmosphere radiation (TOA) imbalance
(Supplementary Fig. 8), and the patterns and magnitudes of near-
surface wind anomalies (Supplementary Fig. 5). For example, as
previously reported10, hiatus decades in the Community Climate
System Model 4 are characterized by a PDO-like pattern of near-
surface temperature change, increased deep-ocean heat uptake (and
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Figure 3 | Trends in GMST and Niño 3.4 index. a, Relationship between
decadal SST trends in the Niño 3.4 region (120◦ W–170◦ W and 5◦ S–5◦ N)
and decadal GMST trends in CMIP5 pre-industrial control simulations
(labels correspond to models in Supplementary Table 1). b, The magnitude
of Niño 3.4 SST variability on annual and decadal timescales in CMIP5
pre-industrial control simulations compared with observed values (see
Methods). Our constrained ensemble corresponds to the nine models that
simulate the magnitude of Niño 3.4 variability on interannual to decadal
timescales to within±20% of observed values.

associated heat export from the near surface), and no significant
changes inTOA. In contrast, hiatus decades in theGeophysical Fluid
Dynamics Laboratory Climate Model 3 are characterized by strong
surface cooling and accelerated westerly winds over the Southern
Ocean, a large contribution to cooling fromTOA imbalance, and no
significant changes in deep-ocean heat uptake. These differences are
a powerfulmotivator for the application of observational constraints
that allow us to identify models that have the best representation of
internal climate variability.

The evaluation of internal GMST variability by comparison with
historical observations is complicated by the confounding influence
of uncertain climate forcings and variable model responses2.
However, many studies have emphasized the importance of the
tropical Pacific for the evolution of GMST (refs 5,9,29,30). To
examine the sensitivity of our results to model deficiencies in
simulated internal climate variability, we use a simple metric
to identify a subset of models that most accurately simulate
the magnitude of tropical Pacific sea surface temperature (SST)
variability (Fig. 3; see Methods for details of the applied constraint).
Following the application of our constraint, the absolute and
conditional probabilities of a hiatus event continuing for a given
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Figure 4 | Characteristics of hiatus and post-hiatus periods a, Trends in upper ocean heat content, deep-ocean heat content, total Earth system energy
content (defined as time-integrated anomalies in TOA), and the PDO index for ‘hiatus’, ‘continued hiatus’, and ‘accelerated warming’ periods as defined in
the main text. Error bars indicate±1 s.d. across the composite. b, Distributions of 5-year trends in GMST due to internal variability estimated using ARMA
models for all 5-year periods and for 5-year periods starting from the last year of a 10-year ‘hiatus’ period. Annotations indicate the probability of trends
>0.2 K per decade and<−0.2 K per decade. c,d, Composite mean patterns of near-surface temperature change associated with 5-year ‘continued hiatus’
(<−0.2 K per decade, N= 10) and ‘accelerated warming’ (>0.2 K per decade, N=25) periods following ‘hiatus’ decades (<−0.2 K per decade, N=61) in
our constrained ensemble. To indicate consensus across composites, data are plotted only if more than two-thirds of trends are of the same sign. Further
details are included as Supplementary Methods.

number of years are very similar (Fig. 2c,d and Table 1), although
the probability of events lasting longer than 20 years is reduced
owing to the exclusion of some models that have large-amplitude
GMST variability on multi-decadal to centennial timescales. Using
our constrained ensemble, themulti-model probability for a 15-year
variability-driven hiatus continuing 5more years (using an expected
contemporary surface warming rate of 0.2 K per decade) is 15%with
a multi-model range of 0–25%.

Finally, we use our constrained ensemble to evaluate the climatic
impacts in the periods that follow hiatus decades. Although we
have emphasized the possibility of an existing hiatus continuing
into the future, there is also an increased risk of ‘accelerated
warming’ following a hiatus (Fig. 4b). We find that a 5-year period
of accelerated warming >0.2 K per decade is 1.7 (model range of
1.3–2.1) times more likely to occur when starting from the last year
of a hiatus decade (<−0.2 K per decade; Fig. 4b) . Alternatively, a
5-year ‘accelerated warming’ period is 2.0 (model range of 1.6–2.4)
times more likely to occur when we consider only trends starting
the last year of ‘terminated’ hiatus decades (that is, those that do not
continue another five years into the future).

Continued hiatus periods are associated with heat uptake by the
sub-surface ocean (Fig. 4a) and a composite mean pattern of surface
temperature change similar to that in hiatus decades (Fig. 4c).
In contrast, accelerated warming periods are associated with the
release of∼0.2Wm−2 of heat from the sub-surface ocean (Fig. 4a),
a pattern of warming that approximates a mirror image of surface

temperature trends during hiatus periods (Fig. 4d), and a strong
shift towards the positive phase of the PDO (Fig. 4a). In addition,
there is some consensus (>2/3 events) that periods of accelerated
warming following global cooling decades will be associated with
warming across South America, Australia, Africa, South East Asia,
and the Arctic.

One of the notable discrepancies between recently observed
surface temperature trends and the features of ‘hiatus’ decades
in model simulations9–11 (Supplementary Fig. 4) is in the sign of
temperature change over the Arctic. Hiatus decades associated with
internal variability in models generally exhibit cooling over the
Arcticwhereas recent observations19 indicate a strongwarming.Our
results indicate that, following the termination of the current global
warminghiatus, internal climate variabilitymay act to intensify rates
of Arctic warming leading to increased climate stress on a region
that is already particularly vulnerable to climate change.

Here, we have shown that, although rare, a global warming
hiatus could last 20 years or more owing to internal variability
alone. Although we found no systematic bias in the representation
of tropical Pacific SST variability (Fig. 3), others have highlighted
that a recent acceleration of equatorial Pacific trade winds is
outside the range of variability simulated by CMIP5 models5. This
difference was attributed to models systematically underestimating
internal variability and/or a role for external forcings in the
recent hiatus. If either of these factors are important, we expect
hiatus periods in the real world to last longer and/or be more
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extreme (that is, offset more warming) than those due to
internal variability in CMIP5 models. In addition, regardless of
whether internal variability or external forcings have been the
dominant driver of the observed warming hiatus, we emphasize
that there is a substantial probability that internal variability of
the climate system could offset warming until the end of the
current decade.

Methods
Observed temperature trends. We use the following observational data sets to
estimate GMST trends: 100 realizations of the Hadley Centre/Climate Research
Unit temperature data set31 (HadCRUT4) available from
http://www.metoffice.gov.uk/hadobs/hadcrut4; two versions of HadCRUT4 in
which unobserved grid boxes are filled using either optimal interpolation or a
hybrid method that incorporates satellite temperature data19 available from
http://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html; the
Goddard Institute of Space Studies Surface Temperature Analysis32 available from
http://data.giss.nasa.gov/gistemp; The National Oceanic and Atmospheric
Administration (NOAA) Merged Air Land and SST Anomalies data33 available
from http://www.esrl.noaa.gov/psd. Observed SST trends in the Niño 3.4 region
are calculated using the Hadley Centre Sea Ice and Sea Surface Temperature
gridded data set34 available from http://www.metoffice.gov.uk/hadobs.

CMIP5 model data. We use data from simulations performed as part of CMIP5.
CMIP5 is the primary modelling resource used in support of the Fifth
Assessment Report (AR5) of the IPCC and the contributing models represent the
state-of-the-art in coupled climate simulations. Each model provides an estimate
of the evolving ocean and atmosphere state in response to any imposed climate
forcings and includes representation of the intrinsic variability generated by the
coupled climate system.

Estimation of warming due to external forcings. To estimate background
warming rates over the historical period, we use historical (up to 2005) and
Representative Concentration Pathway 4.5 (RCP4.5, post 2005) scenarios from
available CMIP5 models. We estimate uncertainty in the forced component of
climate change by calculating single-model ensemble means for CMIP5 models
with three or more historical scenario ensemble members, and applying a
low-pass Butterworth filter with a 10-year cutoff. From 2004 to 2013, our
estimates of background warming rates due to external forcings range from 0.11
to 0.28K per decade. The thirteen models with three or more historical ensemble
members have a TCR (as estimated by ref. 35) to a doubling of CO2 in the range
1.5–2.5 K (see the IPCC AR5 likely range of 1.0–2.5 K). TCR represents a measure
of the sensitivity of GMST rise to imposed greenhouse gas concentrations in the
models such that those with a larger TCR have a larger projected surface
warming for a given climate change scenario; importantly, we find no significant
relationship between model TCR and the characteristics of internal GMST
variability (Supplementary Fig. 9). This means that the impact of uncertainties in
TCR can be considered independently from the impact of uncertainties in the
representation of GMST variability.

Calculation of internal variability. To estimate internal variability in GMST and
Niño SST indices we use CMIP5 pre-industrial control simulations and calculate
annual mean diagnostics using data from the 23 models listed in Supplementary
Table 1 retrieved from the CMIP5 archive (http://cmip-pcmdi.llnl.gov/cmip5). All
pre-industrial control time series are linearly detrended to limit the impact of
model drift.

Estimation of trend probabilities. Long time series are necessary for the
estimation of probabilities conditional on the existence of a preceding event. For
this reason, we use generic ARMA models to generate 10,000-year-long synthetic
realizations of GMST variability that have the same auto-correlation
characteristics as data from CMIP5 pre-industrial control simulations. We fit
ARMA models of the form(

1−
p∑

i=1

ϕiLi

)
Xt=

(
1+

q∑
i=1

θiLi

)
εt (1)

to each detrended CMIP5 time series (Xt ), where ϕi and θi are autoregression
(AR) and moving-average (MA) coefficients at lag i, p and q are the order of AR
and MA components, Li is the lag operator (defined such that LiXt=Xt−i), and
εt is Gaussian white noise with a variance of σ 2. Values of p and q are calculated
by minimization of an Akaike information criterion as implemented in the
forecast package of R (ref. 36). Trend probabilities are estimated by calculating
linear least-squares trends for all overlapping trends of length N and then
finding the fraction of trends with a slope coefficient less than or equal to a
specified value.
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