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Abstract—Solar spectra change depending on location, weather,
and time of day around the world. These spectral variations affect
the performance of photovoltaic (PV) cells and modules and are
not captured by standard testing procedures. We introduce a
method to classify spectra and use this classification to develop
a testing procedure to reproduce spectral conditions of locations
within various climate zones. With LED solar simulators becoming
commercially available and representative sets of outdoor spectra
found, the gap between real world outdoor testing and indoor
testing is closing. With LED-based testing of CdTe, Si, and GaAs
PV cells, we show that the effects of spectral shifts on short
circuit current are captured, demonstrating the potential use of
this method for more accurate testing of solar modules indoors.

Index Terms—solar spectrum, LED solar simulators, testing
standards

I. INTRODUCTION

Standard testing conditions (STC) of photovoltaic (PV) de-
vices do not take all outdoor operating conditions into account
using only one specific temperature, 25 degrees Celcius, and
one specific spectrum, AM 1.5G. [1] [2] There are efforts to
capture and standardize variations in outdoor climate through
temperature coefficients, and number of sun hours per location.
[3] However spectral variations are often still neglected, even
if studied widely. [4]. However, thus far in standard testing,
these spectral differences are not taken into account.In this
work we propose a method to uniquely classify spectra, and
use this classification to select a representative set of spectra
that can be used for location specific energy yield predictions.
This method is called Representative Identification of Spectra
and the Environment (RISE). [5] Through this work millions of
outdoor spectra are condensed into 10 to 20 different spectra
with which we can test solar cells indoors. In this paper we
explain the RISE through simulation and then demonstrate how
these spectra capture differences between materials by testing of
Cadmium Telluride (CdTe), Silicon (Si), and Gallium Arsenide
(GaAs) PV cells.

II. RISE METHOD

The RISE method is explained in Figure 1. It uses millions
of measured solar spectra as input and outputs a representative
set of spectra. For this work we have obtained data from
four locations representing different climate zones including
cold arid, fully humid equatorial, equatorial with dry summer,
and fully humid warm temperate. Each of these locations has
very different spectra conditions, and with these millions of
spectra, we find a small number of spectra that represent the
entire data set to some accuracy. In this work, we first bin the
spectra by irradiance with half as many spectra allotted to each
successively higher irradiance bin. This captures the irradiance
differences, but not any of the differences in the shapes of
the spectral curves. Therefore, within each irradiance cluster,
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Fig. 1. RISE Classification method: 1. Align data, 2. Cluster data, 3. Find IV
curves and weights for each cluster center, 4. Predict Energy Yield (EY).

a machine learning clustering algorithm called k-means is run
to capture secondary spectral difference such as red and blue
shifts. With these two steps, we have captured two physically
interpretable effects, intensity variations and spectral shift.

We model two types of solar cells, CdTe and Si to understand
how well the representative spectra predict energy yield (EY)
when compared to using all millions of spectra to calculate
EY. To accomplish this, we first create models for CdTe and
Si using the one-diode model below equations. [6]

I = Iph − I0(e−q(V+IRS)/(nkbT ) − 1)− (V + IRS)/Rsh (1)

with Iph as the photocurrent found using Equation 2, I0 as
the dark saturation current found using Equation 4, q as the
elementary charge (1.602∗10−19C), V as voltage, I as current,
RS as series resistance, n as ideality factor, kb as Boltzmann
constant (1.380 ∗ 10−23J/K), T as temperature, and Rsh as
shunt resistance.

Iph =
∑

((EQE(λ) ∗ Irr(λ))/Eph(λ)) (2)

with EQE as external quantum efficiency resolved by wave-
length, λ, Irr is the irradiance falling on the cell resolved
by wavelength, and Eph as the photon energy resolved by
wavelength as found with Equation 3.

Eph = (hc ∗ 109)/λEQE (3)

with h as Planck’s constant (6.626∗10−34Js), c as the speed
of light (3 ∗ 108m/s), and λEQE as the wavelength.

I0 = I0,STC(T/TSTC)3 ∗ e((qEg/nkbT )∗(1/TSTC−1/T )) (4)

with I0,STC as the dark saturation current at standard testing
conditions (STC), T as temperature, TSTC as the temperature
at STC, q as the elementary charge (1.602 ∗ 10−19C), Eg as
the band gap of the material, n is the ideality factor, and kb as
Boltzmann constant (1.380 ∗ 10−23J/K).

From these models in Equations 1 - 4, IV curves are found
with temperature and spectral data of the representative clusters



for both Si and CdTe with parameters shown below. We then
apply temperature coefficients to these cells shown below in
the modelling parameters table. These IV curves are used to
find energy yield (EY).

EY [Wh/m2] =

N∑
i=1

η(∆n, T, P (λ), ...)Pint (5)

with η as efficiency of the solar cell which is dependent on
minority charge carrier injection, ∆n, (number of electrons or
holes injected due to excitation of solar power hitting material),
temperature, T, power per wavelength, P(λ), and more. Pin is
the total power into the cell in W/m2 which can be found by
integrating Irr(λ), t is time in hours, and N is total number of
measured spectra evaluated over.

The silicon and cadmium telluride cells were modeled to
have the same efficiency for direct comparison. A list of the
parameters for these models is in the table below.

Modeling Parameters, and STC results
Parameter Silicon CdTe
Efficiency, % 18.2 18.2
Fill Factor, % 82.6 75
Open Circuit Voltage, V 0.618 0.848
Short Circuit Current,
mA/cm2

40.1 27.6

Temperature coefficient, %
performance lost per degree
K

-0.41 -0.32

Series Resistance, ohm/cm2 1.3 1.215
Shunt Resistance,ohm/cm2 500 500
Band Gap 1.12 1.5

III. CLASSIFICATION RESULTS

The results shown are for intensity bins (K1), K1 = 6, and
k-means bins (K2), K2 = 3, making a total of 18 representative
bins to describe all of the data from the four locations.

As can be seen in the top left of Figure 2, these spectra have
intensity (K1), and shape (K2) differences. There are 6 distinct
intensities with 3 different shapes in each one, as is expected.
The number of spectra from the full data set that belong in each
bin are shown in the bottom left. First we can see, that many
more spectra occur in the lower intensity bins, as seen in bin
0 outlined in orange. This makes sense as both morning and
night, as well as cloudy days product low intensity spectra. We
can also see there is a segregation of data according to location
that the algorithm natural finds. For instance, bin 16, outlined
in pink, is mostly indicative of Singapore data (Af), with very
few Colorado, Brazil or Denmark data belonging in bin 16. The
fact that the algorithm picked up on these differences indicates
the spectral shape differences for the different locations.

Using the Si and CdTe models and the binned spectra, IV
curves shown in the top right of Figure 2 are calculated. Using
these IV curves along with the weights from the bottom right
of Figure 2, we calculate energy yield results using Eqn.5.
These results can again be made into a heat map with percent
contribution to EY. As can be seen, the segregation between
locations persists, but now the higher intensity bins are the
most prominent because they contribute the most to energy
yield even though the frequency of occurrence is less.

With these results we can compare the RISE method with
the ”ground truth” which is here the EY found using every
single measurement in the dataset. This is also compared to
the standard testing condition results found with modeling the
cell under STC and multiplying be the number of sun hours for
each location. In Figure 3 we see these EY results for Denmark,
Colorado, and Singapore.

As can be seen in Figure 3, the RISE method captures the
ground truth with less than one percent error as compared
to STC estimates that have errors as much as 20 percent
(Singapore, Si). It should be noted that these results use the
modeling parameters from the methods section, so both tech-
nologies have the same baseline efficiency under STC. Looking
at the Singapore results, it can be seen that CdTe outperforms
silicon greatly, and the STC overestimates Si energy yield and
underestimates CdTe energy yield. It is also worth noting that

Fig. 2. Top left: Representative spectra (bins) found using the RISE method,
Top Right: calculated IV curves, Bottom Left: Weights of number of spectra
in each bin for different locations and seasons, Bottom Right: Contributions to
EY of each bin for different seasons and locations.

Fig. 3. EY predictions for three different locations using all data (”ground
truth”), the RISE method with 18 spectra and average temperatures from each
bin, and standard testing conditions.

the largest difference between the technologies is in Singapore
as compared to Colorado and Denmark. This can be explained
by Si’s sensitivity to humidity and heat when compared to the
more tolerant CdTe. Furthermore, the only location where Si
is competing relatively well with CdTe is in Denmark where
there is a colder climate. However, Denmark being fairly humid
also has some advantages for CdTe. The discrepancy between
RISE and ground truth is believed to arise from the temperature
averaging done for the RISE method, whereas each measured
module temperature is accounted for in the ”ground truth”. One
way this could be mitigated in the future is by testing each of
the representative RISE spectra at several temperatures during
module testing to capture these differences.

IV. LED-RISE EXPERIMENTS

To test out this methodology on PV cells, we procured a
Wavelab Sinus 70 LED-based solar simulator, [7] and test the
representative spectra found using the RISE method on several
PV technologies. The three tested technologies are Si reference
cells from Fraunhofer Institute of Solar Energy (ISE), CdTe
cells from First Solar (FSLR), and GaAs cells from ISE. The
equipment used to test these cells is the Wavelab Sinus 70
which has 21 individual LED’s to tune to the representative
spectra. This can be seen in Figure 4.



Fig. 4. Left: Maximum power of LED’s in Wavelab Sinus 70. Right: Fit of
these LED’s to representative spectra.

Next, these cells are tested under the representative spectra to
compare short circuit current (Jsc) between technologies. We
expect differences between the performance of CdTe and Si
under different climate zone conditions. This is what we see
in the experimental results in Figure 5 with a comparison of
Jsc normalized by STC AM1.5G for CdTe and Si technologies.
This normalization means that the Jsc found for each technol-
ogy and for each spectra is divided by the Jsc found with STC
for that technology to get a relative difference from baseline.
In this figure, if the number on the x-axis is positive, then Si
performs relatively better in that location in terms of Jsc. As
can be seen in Figure 5, CdTe Jsc’s are relatively better than
Si in Singapore. This makes physical sense as this is the most
humid location where CdTe would expect to outperform Si. It
can also be seen the Si Jsc’s are best in Colorado which can be
understood due to its relatively dry climate, and for Denmark
there is more of a split between CdTe and Si Jsc’s.

Capturing these spectral difference in Jsc with indoor testing
of solar modules is a proof of concept for this technique. With
the representative spectra found and programmed into an LED
solar simulator, Jsc differences are measured corresponding to
those seen outdoors. This demonstrates an opportunity for these
methods to be used within industry or academia to test PV
technologies for different climates zones.

Fig. 5. Normalized Short Circuit current (Jsc) differences between CdTe and
Si technologies.

V. DISCUSSION OF SIGNIFICANCE TO FIELD

With the advent of new LED based solar simulators that
more accurately reflect the sun’s light, we can have more
accurate testing of PV cells and modules indoors. Along with
this advance, clustering techniques from the field of machine
learning have become widely available and can be used to
reduce millions of experimental spectra into a number that can
realistically be tested on PV cells indoors. In this work, EY’s
found using representative spectra demonstrate close accuracy
to energy yield predictions found using the full data set. We test
these representative spectra with LED-based solar simulators
to confirm this method. The Jsc differences expected from
these different spectra on Si vs. CdTe are captured by these
experiments. From these results, changes to how PV devices
are tested in research and development settings and potential
alterations to international standards are envisioned with LED-
based solar simulators and spectra that represent the worlds
climate zones accurately leading the way.

VI. SUMMARY

In this work, we demonstrate the RISE method for finding
a representative set of solar spectra that can be used to more
accurately test PV cells indoors for outdoor conditions cap-
turing sensitivities to spectra that are not captured in current
standard testing conditions. Using this method, we show that
EY predictions are within less than one percent of ”ground
truth” found with all of the experimental data. We test these
spectra experimentally using a LED-based solar simulator to

demonstrate this capability. The LED-RISE experiments cap-
ture different materials’ sensitivities to variations in spectra in
a way that current standards do not. With these new advances,
more accurate testing of PV cells and modules within labora-
tories can be used for PV device design and optimization.
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