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Abstract
We describe Simudo, a free Poisson/drift-diffusion steady state device model for semiconductor and intermediate band 
materials, including self-consistent optical absorption and generation. Simudo is the first freely available device model that 
can treat intermediate band materials. Simudo uses the finite element method (FEM) to solve the coupled nonlinear partial 
differential equations in two dimensions, which is different from the standard choice of the finite volume method in essen-
tially all commercial semiconductor device models. We present the continuous equations that Simudo solves, show the FEM 
formulations we have developed, and demonstrate how they allow robust convergence with double-precision floating point 
arithmetic. With a benchmark semiconductor pn junction device, we show that Simudo has a higher rate of convergence than 
Synopsys Sentaurus, converging to high accuracy with a considerably smaller mesh. Simudo includes many semiconductor 
phenomena and parameters and is designed for extensibility by the user to include many physical processes.

Keywords  Device model · Intermediate band materials · Optoelectronics · Finite element method · Photovoltaics

1  Introduction

Device models are essential components of the development 
of semiconductor devices, from transistors to solar cells to 
lasers. Standard semiconductor device models, such as Syn-
opsys Sentaurus, treat materials with 0, 1, or 2 bands (i.e., die-
lectrics, metals, and semiconductors, respectively) along with 
an electrostatic potential. At a given location in a given mate-
rial, each band has its own carrier concentration, with parti-
cle motion given by diffusion and electric-field-induced drift. 
Since the electric field itself depends on particle motion, the 
resulting Poisson/drift-diffusion (PDD) equations are nonlin-
ear and require numerical solution in the general case [1–5].

A new class of materials, called intermediate band (IB) 
materials, has been developed over the last 20 years with the 
goal of improving solar cell efficiency and producing effective 

infrared photodetectors [6–10]. These IB materials are like 
semiconductors except they have an extra band of allowed 
electronic energy levels above the valence band (VB) and 
below the conduction band (CB), as shown in Fig. 1. Such a 
band structure permits optical absorption from VB to IB and 
from IB to CB, which is the key to the increased solar cell effi-
ciency [6]. It is also possible to consider multiple IBs, though 
such materials have not yet been realized in practice [11].

Where IB devices have been made, they have not generally 
been highly efficient, which is believed to be largely due to 
fast nonradiative recombination processes [7–10, 12–15]. It 
has not been possible, however, to perform standard device 
modeling to optimize these devices, to determine the ideal 
layer thicknesses, doping levels, etc., since standard semicon-
ductor device models do not allow the possibility of treating 
a third band. Therefore, we do not know what efficiencies 
existing IB materials could permit, if they were optimized. 
Interpreting experiments on IB materials and designing the 
best devices require device modeling capabilities.

In order to describe the basic physics of IB devices, one 
must be able to describe

1.	 Optical processes between CB, VB, and IB with rates 
dependent on IB filling fraction f,

2.	 Nonradiative processes between CB, VB, and IB with 
rates dependent on f,
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3.	 Carrier transport within the IB,
4.	 Junctions with standard semiconductors.

There is a large array of standard numerical semiconductor 
device models based on the coupled Poisson and carrier-
continuity equations, including general purpose ones, such 
as Synopsys Sentaurus and Silvaco, as well as more special-
ized models such as Crosslight, which includes modeling of 
quantum well physics and a coupled treatment of carrier-
density dependent optics for lasers, and TiberCAD [16]. 
Nextnano++ also includes features specific to quantum 
structures and can solve an 8-band k.p model self-consist-
ently with the Poisson and drift-diffusion calculations [17]. 
There are also more focused ones, such as PC1D [18, 19], 
AFORS-HET [20], SCAPS [21], and Solcore [22], which 
are 1D models focused on solar cells. Many of these mod-
els allow treatment of deep-lying states inside the semicon-
ductor band gap, primarily as Shockley–Read–Hall (SRH) 
trapping and recombination centers [23]. Sentaurus and 
PC1D, for example, do not permit optical generation from 

the deep-lying states. SCAPS does permit both thermal and 
optical processes, but does not consider transport of carriers 
inside the defect band. We do not attempt a full characteriza-
tion of all the available device models, but Table 1 shows 
which of these requirements are met by these device models.

There have been a number of device models developed spe-
cifically for IB materials, mostly for solar cells, all in steady 
state. These include traditional [6, 28–30] and Boltzmann 
approximation [31, 32] detailed balance models, semiana-
lytic models in the drift [33] and diffusion [24, 34, 35] limits, 
and PDD models [25–27, 36]. The semianalytic models are 
specific to either the drift or diffusive limits, while the PDD 
models allow treatment of IB regions that are neither fully 
depleted nor fully quasi-neutral. A comparison of the fea-
tures of the PDD models is also included in Table 1. To our 
knowledge, none has been released as open-source software.

Here, we introduce Simudo, a free and open source steady 
state PDD solver with self-consistent optics for arbitrary 
numbers of bands. Simudo uses the finite element method 
(FEM) to solve the coupled Poisson, drift-diffusion, and 
Beer-Lambert optical propagation equations self-consist-
ently, when necessary including changing f according to 
local generation and recombination, with associated changes 
in the optical absorption coefficient. Simudo has built-in 
radiative recombination, Shockley–Read trapping, and SRH 
recombination models in the non-degenerate limit and is 
straightforward to extend to include other models of gen-
eration or recombination. All of the band parameters, from 
energies to mobilities to cross sections, can vary in space or 
as functions of other parameters.

Simudo has a number of innovations in its formulation of 
the problem, described below, and allows high-accuracy sim-
ulation of benchmark semiconductor problems while working 
with 64-bit arithmetic, making it useful both for standard 
semiconductor simulations as well as for IB devices. It is 
written in the Python programming language, using the FEn-
iCS platform to solve the FEM problem [37]. It exposes an 
easy-to-use API for defining problems and extracting results. 

Fig. 1   Band diagram of illuminated 1D intermediate band device at 
short circuit. Device structure of p-IB-n device shown at top, and the 
IB material has an extra band contained entirely inside the semicon-
ductor band gap. Solid lines show the band edge energies EC , EV and 
the IB energy EI . Dashed lines show the quasi-Fermi levels wC , wV , 
and wI . Parameters as in Sect. 4.3

Table 1   Comparison of selected 
device models

IB optics with 
photofilling

IB nonradiative 
processes

IB transport Junctions 2D

Sentaurus N Y Limited Y Y
PC1D [18] N Y N Y N
SCAPS [21] Y Y N Y N
TiberCAD [16] N Y Y Y Y

Martí [24] N N Y N N
Strandberg [25] Y N Y N N
Tobias [26], Yoshida [27] Y N Y Y N

Simudo Y Y Y Y Y
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It is designed for two-dimensional systems and is available 
for download at https​://githu​b.com/simud​o/simud​o.

Semiconductor device modeling is typically performed 
using the finite volume method (FVM), which ensures local 
charge conservation at each cell in the domain [38]. Finite 
element methods are less common in semiconductor device 
models, though there are a number of examples [16, 39–41]. 
FEM is widely used for related advection-diffusion prob-
lems in computational fluid dynamics (CFD) studies [42]. 
Commercial packages for CFD, as for semiconductor device 
modeling, are generally based on the FVM method. Tiber-
CAD, a commercial device modeling package with many 
novel features, uses FEM with continuous basis func-
tions [16]. Finite element methods including discontinuous 
local basis functions, called discontinuous Galerkin (DG) 
methods, also permit local charge conservation [42], and 
they have recently begun to be applied to semiconductor 
device problems [43, 44]. FEM methods simplify considera-
tion of complicated simulation domains and in theory allow 
higher-order convergence of solutions, but performance of 
such methods can only be determined with testing. We use 
such a DG-FEM method here to produce a general purpose 
steady state PDD solver capable of treating IB systems, and 
we show that Simudo realizes the higher-order convergence 
with mesh size, converging much more rapidly than Syn-
opsys Sentaurus as the mesh spacing is reduced. As shown 
in Sect. 3.5, for a reference pn diode, Simudo demonstrates 
quartic self-convergence with mesh density, while FVM-
based Synopsys Sentaurus demonstrates only quadratic con-
vergence. In the reference problem, Simudo achieves 5–6 
digits of convergence with 193 mesh points, while Sentaurus 
requires more than 3000. Simudo provides both a flexible 
framework for the study of IB devices and also a freely avail-
able example of a DG-FEM semiconductor device model.

In Sect. 2, we define the coupled partial differential equations 
(PDEs) Simudo solves. Section 3 describes the heart of Simudo, 
giving in detail the conversion of the equations of Sect. 2 to 
the weak forms solved using FEM. This section describes the 
choices for dynamical variables, the weak forms used for FEM, 
and how these choices enable Simudo to achieve accuracy 
despite the problems of finite precision arithmetic. This sec-
tion concludes with a comparison to Synopsys Sentaurus on 
a benchmark pn diode, showing the high quality of Simudo’s 
results. Section 4.1 gives examples of setting up a simple prob-
lem using the API, including examples of its convenient topol-
ogy definitions, and Sect. 4.2 demonstrates the extensibility of 
Simudo to include new physical processes (in this case, Auger 
recombination). Section 4.3 demonstrates the use of Simudo to 
analyze a system originally studied in Ref. [24], showing that 
its model works better than had been anticipated in the case 
with equal subgap optical absorption cross sections, but that 
unequal subgap absorption cross sections produce more compli-
cated phenomena that require IB transport to describe properly.

2 � Statement of problem

In this section, we describe the mathematical model of the 
steady state PDD and optical problems we use in Simudo. 
Carriers both drift in response to electric fields and diffuse. 
Carriers are generated optically and recombine using a variety 
of models. The local carrier concentration determines both 
the electric field and the optical absorption coefficients, so 
the transport, Poisson, and optical propagation equations are 
all coupled. Symbols used in this manuscript are summarized 
in Table 2.

2.1 � Carrier transport and generation

We consider a CB, a VB, and some number of IBs under the 
assumption that the carrier population in each band is in local 
quasi-equilibrium with a temperature T and quasi-Fermi level 
wk , where k can be one of {C,V , I} for the CB, VB, and IB, 
respectively. In the case of multiple IBs, k can take values 
I1, I2,… , indexing the various IBs, but we simplify the follow-
ing discussion to consider the case of just one IB, indexed as I.

In the most common approximation of semiconductor 
device modeling, the carrier dynamics in each band can be 
described by the drift-diffusion equation and the continuity 
equation. Letting uk represent the carrier concentration in 
band k, uV and uC are the hole and electron concentrations, 
respectively, which we use interchangeably with their stand-
ard symbols, p and n. We let sk = ±1 give the charge of the 
carriers in band k, +1 for the VB and -1 for the CB. Then, 

where �k is the current density of carriers in band k, �k is the 
carrier mobility, Dk is the carrier diffusion constant, � is the 
electric field, q is the elementary charge, and gk contains all 
the generation, trapping, and recombination processes (see 
Sect. 2.1). For non-degenerate bands in which wk is suffi-
ciently far from the band edge Ek − q� , we can write

where Nk is the effective density of states of band k, � is the 
electrostatic potential, and kB is Boltzmann’s constant.

Then, assuming Ek is spatially constant,

(1a)
�k =

drift

⏞⏞⏞
q�kuk�−

diffusion

⏞⏞⏞⏞⏞⏞⏞
skqDk�uk

(1b)
�uk
�t

= −sk
1

q
� ⋅ �k + gk,

(2)uk = Nke
−sk(wk+q�−Ek)∕kBT ,

(3)�uk = − skNke
−sk(wk+q�−Ek)∕kBT

1

kBT
�(wk + q�)

(4)= − sk
uk

kBT
�(wk + q�),

https://github.com/simudo/simudo
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For such nondegenerate bands, the Einstein relation gives 
�k = qDk∕kBT  , from which Eq. 1a gives [2]

which we use instead of Eq. 1a. Equation 5 also applies to 
the case of degenerate bands, as shown in [45], even though 
the Einstein relation requires a modification. Moreover, 
Eq. 5 applies in the case of spatially varying band struc-
ture (e.g., spatially varying Nc, Ec) [46], so it is considerably 
more general than this derivation.

Since an intermediate band is often partially filled, we 
cannot model it using the non-degenerate approximation of 
Eq. 2. We write DI(E) for the density of states of the IB, such 
that NI = ∫ dEDI(E) is the total density of IB states. If the 
IB has quasi-Fermi level wI , the electron concentration is

If the bandwidth of the IB is narrow relative to kBT  , we 
can approximate the IB density of states as a Dirac delta 
DI(E) = NI�(E − EI) , and so

(5)�k = �kuk �wk,

(6)uI = ∫
dE

DI(E)

e(E−wI−q�)∕kBT + 1
.

(7)
uI = NI

1

e(EI−wI−q�)∕kBT + 1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

fI

,

where fI is the filling fraction of the IB and can be written 
as fI = f (EI − wI − q�) where f(E) is the Fermi function. 
We work in this limit for the remainder of this manuscript. 
Extending beyond this sharp-IB case is not difficult but 
requires more cumbersome notation.

2.2 � Carrier generation and recombination

Each band’s continuity equation (Eq. 1b) has a generation 
term gk . This term is the sum of contributions from all gen-
eration and recombination processes to the band, which 
depend on which physical models are included in the simu-
lations. We now specify the details of optical generation gopt

k
 

and a variety of recombination processes rk , each of which 
enters either as a negative or positive contribution to gk , as 
required for the process.

2.2.1 � Optical carrier generation

Modeling optical carrier generation requires modeling the 
changing light intensity through the device. We use a simple 
Beer–Lambert model for optical propagation and absorption

(8)�𝛷𝜆,ŝ ⋅ ŝ = −𝛼𝜆𝛷𝜆,ŝ

Table 2   Common symbols used 
in this manuscript

Symbol Definition

uk Carrier density in band k
Ek Band edge energy of band k; central energy of IB k
sk Sign of carriers in band k (+ for VB, − for CB)
wk Quasi-Fermi level of carriers in band k
�k Current density in band k
�k Mobility of carriers in band k
Dk Diffusion coefficient of carriers in band k
Sk Surface recombination velocity of carriers in band k
Nk Effective density of states for nondegenerate band k

Integrated density of states for intermediate band k
fk Filling fraction fk = uk∕Nk of IB k
fk,± (1 − fk) for positive sign and fk for negative sign
fk,0 Charge neutral filling fraction of IB k
gk Net generation in band k due to all generation and recombination processes
T Temperature
kB Boltzmann constant
q Elementary charge
�,�, � Electrostatic potential, electric field, and charge density
�fi,� Optical absorption coefficient from band i to f at vacuum wavelength �
�
opt

fi
Optical cross section from band i to f

𝛷𝜆,ŝ Photon spectral flux density at wavelength � in direction ŝ
𝛷[𝜆1,𝜆2],ŝ Photon flux in direction ŝ from �1 to �2 , i.e., ∫ 𝜆2

𝜆1
𝛷𝜆,ŝd𝜆

n̂ Surface normal vector
ŝ Direction of light propagation
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where 𝛷𝜆,ŝ is the photon spectral flux at vacuum wavelength 
� and direction of propagation ŝ and �� is the total absorption 
coefficient, which can be written as

where �fi,� is the absorption coefficient for the optical process 
at wavelength � that moves a carrier from band i to band f. In 
the usual semiconductor case, �VC,� = 0 and �CV ,� is finite for 
� corresponding to energies larger than the band gap. Free 
carrier absorption is included in �ii,�. The carrier generation 
rate in band k due to optical processes is then

Further details of the optical propagation model are 
described in Sect. 2.3.

In nondegenerate bands, there are always enough carri-
ers to excite in or out of a band. That is, the valence band 
always has electrons available, and the conduction band has 
empty states available to be filled, so the absorption coef-
ficient �CV ,� is insensitive to the free carrier density in the 
bands. In an IB, however, the VB → IB process requires 
empty states in the IB while the IB → CB process requires 
filled states in the IB. To capture this phenomenon, we write

where �opt

fi,�
 is the optical capture cross section from band i to 

f at wavelength � of a single intermediate state. We can com-
bine these equations into a single expression,

where uI,− is just uI and uI,+ = NI − uI is the number of holes 
in band I, and �kI is understood to be �IV when k = V  . Since 
�fi,� depends on the carrier concentrations, and the carrier 
concentrations depend on �fi,� (through the generation rate 
g
opt

k
 ), the transport and the optical models feed into each 

other, so they must be solved in a self-consistent manner.

2.2.2 � Recombination and trapping

Simudo offers several built-in radiative and nonradiative 
recombination and trapping mechanisms using the non-
degenerate limit for the CB and VB, each including an equiv-
alent thermal generation. An example is the SRH recombina-
tion model with a single trap level at energy EI [23], in which 

�� =
∑

i,f

�fi,�,

(9)g
opt

k
= −sk ∫

d𝜆

(∑

i

𝛼ki,𝜆 −
∑

f

𝛼fk,𝜆

)
𝛷𝜆,ŝ.

(10)�CI,� =�
opt

CI,�
uI

(11)�IV ,� =�
opt

IV ,�
(NI − uI)

(12)�kI,� = �
opt

kI,�
uI,sk ,

two trapping processes (of an electron and a hole) produce a 
recombination event, with recombination rate

where �p, �n are the carrier lifetimes and p1, n1 are the carrier 
concentrations of holes and electrons, respectively, if their 
quasi-Fermi levels were equal to EI . This rSRH appears as a 
negative contribution to gk for both CB and VB.

We can model traps as intermediate bands with wI tracked 
explicitly, in which case we implement standard Shock-
ley–Read trapping [23],

where fI,−sk is the IB filling fraction of carriers with charge 
−sk , and �k is the Shockley–Read lifetime for band k, as in 
Eq. 13 [23]. Note that rSR

IC
 makes a negative contribution to 

gC and a positive contribution to gI , while rSR
IV

 makes a nega-
tive contribution to both gV and gI.

Simudo also implements radiative trapping from band 
k = C,V  to I. When we use Boltzmann statistics rather than 
Bose statistics for the emitted photons, which is valid when 
|wk − wI| remains at least a few kBT  below |Ek − EI| , as in 
Ref. [25], then the radiative trapping can be written

where

where nr is the index of refraction, and uk,1 is either n1 or 
p1 for k = C,V  , respectively. Note that Ref. [25] includes 
only the recombination term, and we add the corresponding 
thermal generation term, which is the −1 in Eq. 15. We can 
re-express Eq. 15 in a similar form to the nonradiative terms 
by using the relation

which follows from Eqs. 2, 7. Then,

As with Eq. 2, Eqs. 14–16 are valid in the non-degenerate 
limit where wk does not approach Ek , but full degenerate 
statistics are used for the IB. Extensions to the degenerate 
limit can be added, if desired. Simudo also treats standard 
radiative recombination between conduction and valence 
bands [47].

(13)rSRH =
pn − n2

i

(p + p1)�n + (n + n1)�p
,

(14)rSR
Ik

=
[
1 − esk(wk−wI )∕kBT

]
fI,−skuk∕�k,

(15)rrad
Ik

=
[
e−sk(wk−wI )∕kBT − 1

]
uI,skIIk,

(16)IIk =
8�n2

r

h3c2 ∫

∞

0

�
opt

Ik
(E)E2e−E∕kBT dE,

uI,sk =
uI,−skuk

uk,1
esk(wk−wI )∕kBT ,

(17)rrad
Ik

=
[
1 − esk(wk−wI )∕kBT

] uI,−skuk
uk,1

IIk.
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We also treat surface recombination at external surfaces 
�  of the device, which imposes a boundary condition

where Sk is the surface recombination velocity of carriers 
in band k at boundary � , n̂ is the normal to �  , and uk0 is 
the carrier concentration at equilibrium [48]. The current 
release of Simudo supports only Sk = 0 or ∞ , which impose 
�k ⋅ n̂|𝛤 = 0 or (uk − uk0)|� = 0 , respectively.

2.3 � Optical equations

For each wavelength, we need to solve the optical propa-
gation according to Eq. 8. For stability of the numerical 
solution, it is convenient to use a second-order equation so 
that we can apply boundary conditions on both the inlet and 
outlet boundaries [49]. We take the derivative of Eq. 8 with 
respect to the direction of propagation,

With no reflection from the back, the boundary conditions 
are then 

 where 𝛷0
𝜆,ŝ

 is a spectral photon flux at the inlet boundary.
In the case where �� is constant for � in an interval 

[�1, �2] , the optical flux at all wavelengths in that range 
obeys Eq. 19 and can thus be treated together. We can write

where 𝛷[𝜆1,𝜆2],ŝ
 is a photon flux (where 𝛷𝜆,ŝ is a spectral pho-

ton flux). In this case, we have

Simudo uses this form, which allows simple treatment of 
piecewise constant absorption coefficients with a small 
number of optical fields 𝛷[𝜆1,𝜆2],ŝ

 . When optical fields with 
only one propagation direction ŝ are considered, we write the 
spectral flux density �� and the flux density �[�1,�2]

.

2.4 � Poisson’s equation

In electrostatics, Poisson’s equation relates � , the charge 
density � , and the permittivity �,

It can also be split into two equations 

(18)�k ⋅ n̂|𝛤 = Sk(uk − uk0)|𝛤 ,

(19)ŝ ⋅ �(ŝ ⋅ �𝛷𝜆,ŝ) + ŝ ⋅ �(𝛼𝜆𝛷𝜆,ŝ) = 0,

(20a)𝛷𝜆,ŝ = 𝛷0
𝜆,ŝ

� ∈ 𝛤i (inlet)

(20b)ŝ ⋅ �𝛷𝜆,ŝ + 𝛼𝜆𝛷𝜆,ŝ = 0 � ∈ 𝛤o (outlet)

𝛷[𝜆1,𝜆2],ŝ
=
∫

𝜆2

𝜆1

𝛷𝜆,ŝd𝜆,

ŝ ⋅ �(ŝ ⋅ �𝛷[𝜆1,𝜆2],ŝ
) + ŝ ⋅ �(𝛼𝜆𝛷[𝜆1,𝜆2],ŝ

) = 0.

(21)� ⋅ (���) = −�.

(22a)�� = −�,

 where � is the electric field.
The charge density � is the sum of the static charge and 

the mobile charge in each band. In an IB material,

where NA , ND are the shallow acceptor and donor doping 
concentrations, respectively, and the mobile charge in the IB 
is qNI(fI − fI,0) , with fI,0 the IB filling fraction of the bulk IB 
material at T = 0K . For a donor-type IB, fI,0 = 1 , and for an 
acceptor-type IB, fI,0 = 0 . Note that in writing the shallow 
dopant terms ND and NA , we are assuming complete ioniza-
tion of these impurities.

3 � Numerical method

Simudo uses the finite element method (FEM) to solve the 
coupled Poisson/drift-diffusion and optics problems, given 
by Eqs. 1b, 5, 19, and 22. The FEM method divides the 
simulation domain � into cells, which are generally triangles 
in 2D and enforces a weak form of the desired PDE’s with 
a set of test functions defined on those cells, with boundary 
conditions applied on the domain boundary �  . The method 
is well-described in many reference texts [50–52]. In this 
section, we detail the weak forms used for these coupled 
equations and the solution method for the resulting nonlinear 
system. We benchmark Simudo against the industry stand-
ard Synopsys Sentaurus commercial simulator on a standard 
semiconductor problem to show the quality of our results.

3.1 � Solution method

The PDD problem is a coupled nonlinear system of PDEs, 
which we solve iteratively using Newton’s method as 
implemented in the FEniCS package. The solution pro-
cedure is outlined in Fig. 2. The goal is to find a solution 
y = (�,�,wC,wI ,wV , �C, �I , �V ) that satisfies Eqs. 1b, 5, 22 
and associated �� that obeys Eq. 19. The optical problem 
is solved alongside the PDD problem in a self-consistent 
manner. That is, the PDD subproblem produces the absorp-
tion coefficient �(�) (which, for processes involving the IB, 
depends on the filling fraction). The optical subproblem is 
then solved using these absorption coefficients, yielding a 
new photon flux �� , which is fed back into the PDD where it 
enters in the optical carrier generation process, and the cycle 
iterates until a self-consistent solution is found.

The convergence of Newton’s method depends on the 
quality of the initial guess. Steps 1 and 2 in Fig. 2 are the 
pre-solver, which is used once to make the initial guess for 

(22b)� ⋅ (��) = �,

(23)� = q[−n + p − NI(fI − fI,0) + ND − NA],
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the main Newton solver, illustrated in step 3. The full pro-
cedure is:

1.	 For each point in space, calculate the equilibrium Fermi 
level EF at that point assuming local charge neutrality 
and � = 0 . Physically, this step finds the EF in each loca-
tion that makes it charge neutral, before any charge is 
allowed to flow.

2.	 Determine the built-in potential �bi of the equilibrium 
system, using �0 = EF∕q as the initial guess. That is, 
solve only Eq. 22 for � while keeping all wk = 0 and 

thus all �k = 0 . Physically, this step allows charge to 
move, forming depletion regions as the carriers move 
to achieve a zero-current configuration that satisfies 
Poisson’s equation. The carrier density inside bulk-like 
regions of space changes little from the bulk equilibrium 
value in step 1, making �0 an excellent guess in large 
regions of space.

3.	 Main solver loop Adaptively ramp up light intensity 
and/or bias, starting with thermal equilibrium (dark, no 
bias). Each solution requires a loop of Newton iterations. 
Within each Newton iteration, do the following:

(a)	 Optical calculation For each optical field � , solve 
for the photon flux �� given the latest value of �� . 
Note that Eq. 19 is linear when �� is fixed.

(b)	 PDD Newton step Perform one Newton step of the 
PDD problem.

	 i.	 Solve for �y = �(�,�,wC,wI ,wV , �C, �I , �V ) . Use 
the value of �� (and thus optical carrier genera-
tion) computed in the previous step.

	 ii.	 Update y ← y + �y . As an option, loga-
rithmic damping can be applied to �y to 
prevent Newton’s method from diverg-
ing, e.g., y ← y + LogDamping(�y) where 
LogDamping(z) = sgn(z) log(1 + c|z|)∕c for 
c = 1.72 or other user-defined value [53].

	   We now describe the weak forms that we use for each 
of Eqs. 1b, 5, 19, and 21. There is much flexibility in 
the choice of particular weak forms, all of which can be 
equivalent to the same strong form. In Sect. 3.3.2, we 
illustrate the use of a partitioned offset representation 
for wk , which allows internal currents to be calculated 
accurately with double-precision arithmetic.

3.2 � Poisson equation

Here, we introduce the formulation we use to implement 
Eq. 22. We use a mixed method to solve for both � and � 
explicitly [54, 55]. The potential � is represented as a super-
position of discontinuous Galerkin (DG) basis functions of 
order dpoisson − 1 (cell-wise discontinuous polynomials), and 
� is represented using Brezzi–Douglas–Marini basis func-
tions of order dpoisson (cell-wise discontinuous polynomials 
with continuous normal component on cell boundaries) [54]. 
We use the BDM space for all vector quantities, including 
� and �k . The BDM space is H(div) conforming, meaning 

Fig. 2   Workflow of the numerical method used in Simudo. Steps 
1 and 2 are pre-solver steps, which construct an initial guess for the 
main Newton loop (step 3)
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the divergence is accurately calculated and fluxes between 
cells are preserved, which makes it a natural choice for con-
served or almost conserved vector quantities.1 While �k is not 
a conserved quantity, due to generation and recombination 
that occur inside of cells, the BDM space ensures that �k is 
accurately preserved when passing between cells. A method 
using CG or DG functions for � would be susceptible to 
numerical errors associated with non-conservation of cur-
rents between cells, and we show in Sect. 3.3.2 that Simudo 
conserves current well in a pn diode. In the results below, 
dpoisson = 2.

We multiply Eq. 22a by test function � ∈ BDM(dpoisson) 
and Eq. 22b by test function v ∈ DG(dpoisson − 1) , then inte-
grate each spatially, giving the weak forms

which must hold for every test function � and v, where � 
is the full domain and �  is the boundary. Note that Eq. 24 
includes an integration by parts. In this case, the electric 
field BC is an essential BC, imposed by reducing the set of 
test functions to those that satisfy the BC, while the potential 
BC is a natural BC.

3.3 � Transport equations

The drift-diffusion equations are often numerically chal-
lenging to solve in semiconductors. In carrier density-based 
formulations, poor resolution of the gradients of uk makes 
linear interpolation of current density unstable, which the 
Scharfetter–Gummel box method corrects for FVM meth-
ods [1]. Additionally, catastrophic cancellation can occur in 
Eq. 1a, e.g., for the majority carrier in a quasi-neutral region 
of a semiconductor, when the drift and diffusion contribu-
tions are nearly equal in magnitude. The current is given by 
the difference and can be hard to evaluate with finite preci-
sion arithmetic. We address these issues by using a quasi-
Fermi-level-based representation for carrier density [40, 
56]. Calculating �wk in finite precision for Eq. 5 can also 
be challenging when wk is very flat, and in Sect. 3.3.2, we 
introduce a partitioned offset representation for wk to allow 
accurate determination of �wk with essentially no extra 

(24)∮𝛤

� ⋅ n̂𝜙BC

�������������
natural BC

−
∫𝛺

(∇ ⋅�)𝜙 +
∫𝛺

� ⋅ � = 0

(25)∫�

v
(
∇ ⋅ (��)

)
−
∫�

v � = 0,

computational cost. We use a mixed FEM method that 
solves explicitly for both wk and the current density �k . As 
described in Sect. 3.2, the BDM space of basis functions 
enforces local current conservation in the solutions, which 
also enables local current densities to be well determined. 
Without the mixed method, local current conservation is 
enforced indirectly, and we were not able to obtain well-
converged results for local currents.

3.3.1 � Quasi‑Fermi level formulation

The quasi-Fermi level wk is represented as a superposition 
of DG basis functions of order dtransport − 1 , and the current 
density �k is represented using BDM basis functions of order 
dtransport . Section 3.2 contains a discussion of these functions’ 
properties and of the mixed method. In the results below, 
dtransport = 2.

We derive weak forms of Eqs. 1b and 5, multiplying 
Eq. 1b by test function v ∈ DG(dtransport − 1) , taking the dot 
product of Eq. 5 with the test function � ∈ BDM(dtransport) , 
and integrating each equation spatially, giving 

where the second equation was obtained by a further integra-
tion by parts.

3.3.2 � Quasi‑Fermi level offset partitioning

As written, Eq. 26b still suffers from a form of catastrophic 
cancellation in its last term, which corresponds to the gradi-
ent term in Eq. 5. Since ∫

�
� ⋅� = 0 for � ∈ BDM(dtransport) , 

the last term is nonzero only if wk varies within the domain 
where � is nonzero. wk can be extremely flat, for example 
in quasi-neutral regions, which makes this integral hard to 
calculate with finite arithmetic precision. This difficulty is 
more apparent in Eq. 5: if �k∕�kuk = �wk is small,2 a repre-
sentation of wk that stores its value on the nodes of the mesh 
cannot resolve such small changes in wk across space.

We circumvent this issue by using an offset representation 
for wk . The idea is to give each cell in the domain its own 
(spatially constant) base quasi-Fermi level wk0 relative to 
which the new dynamical variable �wk is expressed. That is, 
wk = wk0 + �wk where �wk is the quantity we actually solve 

(26a)0 =
∫�

v� ⋅ �k − ∫�

skv qgk

(26b)

0 =
∫𝛺

� ⋅ �k∕(𝜇kuk) − ∮𝛤

(� ⋅ n̂)wk,BC

�����������������
natural BC

+
∫𝛺

(� ⋅�)wk,

1  In the BDM space, the normal fluxes are shared by adjacent ele-
ments. The flux exiting the perimeter of a collection of cells exactly 
equals the sum of fluxes out of each of the cells, with exact arithme-
tic. 2  relative to |wk|∕(mesh size)
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for instead of wk . Before every Newton iteration step, the wk0 
of each cell is initialized to the cell average of wk from the 
previous iteration. This representation allows small spatial 
changes of �wk to be accurately represented, enabling accu-
rate determination of the current.

The last remaining question is how to adjoin regions with 
different base wk0 values. We connect them by adding a sur-
face integral jump term to Eq. 26b, resulting in

where [wk0] is the jump operator, which takes the difference 
between the values of a discontinuous expression on either 
side of a facet. The rest of this section is dedicated to deriv-
ing that term and comparing the result to a formulation with-
out the offset representation.

We substitute wk = wk0 + �wk into Eq. 26b, and we obtain

Our goal now is to rewrite the (⋆) term. Since wk0 is constant 
on each cell K, �wk0 = � within each cell. We integrate by 
parts using

yielding

Summing over all cells K,

(27)

0 =
∫𝛺

� ⋅ �k∕(𝜇kuk) − ∮𝛤

(� ⋅ n̂) 𝛿wk,BC +
∫𝛺

(� ⋅�) 𝛿wk

+
∑

f∈interior facets
∫f

(� ⋅ n̂) [wk0]

�������������������������������������
region boundary term

.

(28)

0 =
∫𝛺

� ⋅ �k∕(𝜇kuk) − ∮𝛤

(� ⋅ n̂) 𝛿wk,BC +
∫𝛺

(� ⋅�) 𝛿wk

−
∮𝛤

(� ⋅ n̂)wk0,BC +
∫𝛺

(� ⋅�)wk0

�����������������������������������������������������
(⋆)

.

(29)∫𝛺

� ⋅ �a +
∫𝛺

a(� ⋅ �) =
∮𝛤

�a ⋅ n̂,

(30)∫K

� ⋅ �wk0
���

�

+
∫K

(� ⋅�)wk0 = ∮𝜕K

(� ⋅ n̂)wk0

∑

K
�K

���
∫
𝛺

(� ⋅�)wk0 =
∑

K
�𝜕K

(� ⋅ n̂)wk0

�𝛺

(� ⋅�)wk0 = �𝛤

(� ⋅ n̂)wk0 +
∑

f∈interior facets
�f

(� ⋅ n̂) [wk0]

−
�𝛤

(� ⋅ n̂)wk0 + �𝛺

(� ⋅�)wk0

�����������������������������������������������
(∗)

=
∑

f∈interior facets
�f

(� ⋅ n̂) [wk0]

which, plugged into Eq. 28, yields Eq. 27.
We perform a test of Simudo, which uses the partitioned 

offset representation, against the identical model without 
the offset representation. We consider a standard silicon 
pn junction diode with symmetric doping of 1018 cm−3 
and SRH lifetimes of 1 ns and 1 μ s in the p- and n-type 
regions, respectively. Each region has a length of 250 nm, 
for total device length of 500 nm. Although the problem is 
one-dimensional, we consider a 2D region with a height of 
1 µm. At each contact, the majority carrier has an infinite 
surface recombination velocity, while the minority carrier 
has zero surface recombination. We use a mesh with 769 
points in the x-direction, which is tightest near the con-
tacts and junction and expands out geometrically toward 
the middle of the quasi-neutral regions. The mesh has 2 
points in the y-direction, and further details of the mesh 
are given in Sect. 3.5.

The offset representation allows internal current densi-
ties to be resolved accurately throughout the device. Fig-
ure 3a shows the electron and hole currents under 0.16 V 
bias. Without the offset representation, the majority 

(a)

(b)

Fig. 3   a Current densities jC and jV for a silicon pn junction at a bias 
of 0.16  V. Simudo’s partitioned offset representation (dashed, dark 
lines) allows robust determination of internal current densities, while 
calculations without the offset representation (solid, dull lines) cannot 
determine the majority current densities accurately. b Total charge 
current density at the contact. Results with and without the offset rep-
resentation agree to 5 digits of precision
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currents are poorly resolved, due to the inability to resolve 
�wk with double-precision arithmetic. The majority cur-
rents in the no-offset model become worse as the mesh 
density increases (not shown), as expected for approxi-
mations of �wk . Figure 3b shows the total charge current 
density at the contact and the results with and without the 
offset representation agree to 5 digits. We conclude that 
the offset representation allows robust extraction of inter-
nal current densities but does not seem to be important for 
the overall current density of the test device. The offset 
representation imposes essentially no extra computational 
cost on Simudo while enabling robust determination of 
internal current densities.

3.4 � Optics

The optical problem is solved by self-consistently iterating 
through the optical flux variables 𝛷[𝜆i,min,𝜆i,max],ŝi

 and indepen-
dently solving Eq. 19 for each one. For convenience, we 
write 𝛷 = 𝛷[𝜆i,min,𝜆i,max],ŝi

 , ŝ = ŝi , and � = �[�i,min,�i,max]
 for the 

remainder of this section. We represent � using CG basis 
functions of order doptical = 2.

We now derive the weak form used in Simudo to solve 
each optical propagation problem. We follow closely the 
derivation in  [49] of the modified second-order radia-
tive transfer equation (MSORTE) method, without the 
scattering matrix. Integrating Eq. 19 with a test function 
v ∈ CG(doptical) gives

where � = v ŝ and 𝜁 = ŝ ⋅ �𝛷 . Using Eq. 29, we obtain

Inserting the outlet boundary condition Eq. 20b into the first 
term, we obtain the final weak form

The inlet boundary condition Eq. 20a is applied directly on 
� as an essential boundary condition.

3.5 � Sentaurus benchmark comparison

To validate Simudo, we benchmark it against the industry 
standard Synopsys Sentaurus device simulator. Since Sen-
taurus does not support intermediate band materials, the 
benchmark is limited to standard semiconductors. Our test 
problem is the same silicon pn junction as considered in 
Sect. 3.3.2, with the overall J(V) as shown in Fig. 3b. See 

(31)∫�

� ⋅ �� +
∫�

� ⋅ �(� �) = 0,

(32)∮𝛤

(� ⋅ n̂) 𝜁BC −
∫𝛺

(� ⋅ �) 𝜁 +
∫𝛺

� ⋅ �(𝛼 𝛷) = 0.

(33)∮𝛤

(� ⋅ n̂) (−𝛼 𝛷) −
∫𝛺

(� ⋅ �) 𝜁 +
∫𝛺

� ⋅ �(𝛼 𝛷) = 0

below for a discussion of the differences in implementation 
of the Ohmic condition between Simudo and Sentaurus.

We study the convergence of the results as the mesh is 
refined, using a number of mesh points in the x-direction 
ranging from 45 to 12,289, with the same meshes used for 
both Sentaurus and Simudo. The mesh spacing is nonuni-
form in the x-direction since the carrier and current densi-
ties vary most rapidly near the contacts and the junction. 
The meshes are generated by splitting the structure into two 
regions, one extending from the p-contact to the junction 
and one from the n-contact to the junction. In each region, 
a mesh spacing d0 is applied to the cell adjacent to the con-
tact and the cell adjacent to the junction. The mesh spacing 
increases geometrically toward the center of each region 
with a growth factor of 1.2. To generate the finest mesh 
sizes, these cells are further subdivided into 4, 16 or 64 equal 
parts. There are 2 points in the y-direction. The computa-
tional cost generally increases with the number of degrees 
of freedom rather than with the number of cells in the mesh. 
Simudo has more degrees of freedom associated with each 
cell than Sentaurus, due to its higher-order basis functions. 
For this mesh, Simudo has 36 degrees of freedom per tri-
angle while Sentaurus has 9 per triangle, with 2 triangles 

(a)

(b)

Fig. 4   a Relative error in total current J for a test pn junction in 
the dark, at several mesh densities. Dashed lines show results from 
Sentaurus, and solid lines show results from Simudo, with the same 
meshes. The Sentaurus result with the finest mesh is taken as Jref for 
calculating relative error. Points at V = 0 are removed to avoid divid-
ing by zero. b Relative errors at 0.4  V plotted against the number 
of degrees of freedom in each simulation. Solid lines use Sentaurus 
results for Jref , and the dashed line shows Simudo self-convergence. 
Dotted lines show the scaling trends of the two methods
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per mesh point. In this mesh, each triangle has at least one 
edge on the boundary of the device, which increases the 
number of degrees of freedom per triangle compared to a 
mesh where most triangles share sides; this effect is similar 
for both methods.

Figure 4a shows the results of the study, where we plot the 
relative error in J(V) for each simulation, with the reference 
current Jref taken from Sentaturus with the densest mesh. 
With 193 mesh points, Simudo converges approximately as 
well as Sentaurus with 3073 mesh points. Above 769 mesh 
points, the Simudo results show no further improvement in 
error, indicating either that Simudo and Sentaurus converge 
to results that differ at the 10−5 level or that Sentaurus with 
12,289 mesh points is only converged to the 10−5 level, while 
Simudo may have converged more precisely. The simula-
tions were performed on different machines, so we do not 
report timing data.

The figure makes clear that Simudo converges much more 
rapidly with mesh size than Sentaurus, which demonstrates 
the higher-order convergence that FEM is supposed to pro-
vide over FVM. Figure 4b shows the scaling of the errors 
with the number of degrees of freedom in each simulation, 
at 0.4 V. The solid blue line shows that Sentaurus’ self-
convergence scales like N−2 with the number of degrees of 
freedom. The dashed green line shows Simudo’s self-con-
vergence, with Jref taken from the Simudo simulation with 
12,289 mesh points. It shows that Simudo’s self-convergence 
scales like N−4 with the number of degrees of freedom. For 
all but the smallest meshes, Simudo’s convergence is supe-
rior to Sentaurus’ at the same number of degrees of free-
dom. Taken together, these figures show that with 193 mesh 
points, Simudo’s result is as good as Sentaurus’ with 64 
times as many mesh points, which is equivalent to 16 times 
as many degrees of freedom.

Note that the boundary conditions at the contacts are not 
precisely the same for the Sentaurus and Simudo simula-
tions. Both are intended to simulate Ohmic contacts for the 
majority carrier and surface recombination velocities of 0 
for the minority carrier. The Simudo simulations are per-
formed with surface recombination velocity S = ∞ and 0 for 
the majority and minority carriers, respectively, imposing 
equilibrium carrier concentration at the boundary for major-
ity carriers and setting �k ⋅ n̂|𝛤 = 0 for minority carriers, as 
described in Sect. 2.2.2. The Sentaurus simulations are per-
formed with S = 0 for the minority carriers, in agreement 
with Simudo, and the default “Ohmic contact” boundary 
condition for the majority carriers, which imposes charge 
neutrality and equilibrium carrier concentration at the con-
tact. Under small and reverse bias, these two sets of bound-
ary conditions should be equivalent, but under large forward 
bias, the default Sentaurus boundary condition is expected to 
give incorrect results due to its imposition of charge neutral-
ity [57]. Sentaurus provides a “Modified Ohmic” boundary 

condition, which should be closer to the Simudo boundary 
condition, but we were unable to attain convergence using 
it. As a result, at larger biases the Simudo and Sentaurus 
results diverge from each other, and we do not include them 
in Fig. 4. For biases larger than 1 V, the diode is in high 
injection, and the Boltzmann approximation used in this 
calculation is not accurate, regardless.

4 � Examples and results

In this section, we give examples of using Simudo. Sec-
tion 4.1 shows how to set up a simple 1-dimensional pn junc-
tion device and demonstrates the helpful tools that Simudo 
provides for defining regions and boundaries. Section 4.2 
shows the extensibility of Simudo by illustrating the code 
required to add a new Auger recombination process. Sec-
tion 4.3 illustrates the use of Simudo to study a system first 
considered in Ref. [24].

4.1 � PN junction and topology definitions

We include in the supplementary material the code listing 
�����������.�� describing a simple pn junction device in 
Simudo. This example constructs the device and implements 
steps 1–4 of the pre-solver shown in Fig. 2. Here, we dis-
cuss some of the pieces of that code and illustrate the useful 
topology construction operations built in to Simudo.

In the 1-dimensional pn junction example, the object �� 
contains information about the layers, including their sizes, 
positions, and mesh. The object ��� sets up the Poisson/
drift-diffusion solver and has information about the bands 
in each material, including recombination processes and 
boundary conditions. In this example, there are only two 
bands (VB, CB); for a problem including an IB, ��� would 
have a third band, too.

Simudo is designed for 2-dimensional simulations, and it 
has sophisticated tools to define the arrangement of materi-
als, dopings, contacts, meshing regions, or other user-defined 
spatial properties. In many FEM solvers, interfaces must 
be tracked manually, including their orientation, to ensure 
that integrals over those interfaces are added together prop-
erly. Simudo introduces a set of topology tools that instead 
allow users to define the regions and interfaces in which 
they are interested, and Simudo takes care of all the book-
keeping. The user defines regions as desired (e.g., emitter, 
base, defective-region), which can then be given properties, 
whether they be doping levels, recombination parameters, or 
other desired properties. These regions are initially defined 
abstractly, without having any coordinates in the device, 
using CellRegions and FacetRegions and are later 
connected to geometry and materials by the mesh generator.
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Full details are given in the documentation accompa-
nying Simudo, but we give a further illustration of these 
methods in Figs. 5 and 6. That example illustrates the crea-
tion of arbitrary ���������� objects, including unions and 
intersections, and edges that connect them. When � is a 
����������� container, accessing a nonexistent attribute 
(such as �.������ ) causes its creation. The user can define 
new ���������� objects by applying Boolean operations 

on previous ones and new ����������� objects by using 
the �������� method. For example, consider the region 
�.������� . Then, �.�������.��������(�.�������) creates 
a signed boundary from ������� to ������� , as illustrated 
in Fig. 5. All of these custom regions are kept as symbolic 
expressions and evaluated by Simudo only when needed 
(e.g., when asked to apply a boundary condition or when 
asked to compute a volume or surface integral). This layer of 
abstraction allows the user not to worry about the details of 
mesh markers, entity indices, and facet orientations [58] and 
is described more fully in the documentation that accompa-
nies Simudo.

The examples in Figs. 5 and 6 illustrate another useful con-
cept. The mesh generation interprets the �������� region as 
being outside the simulation domain, allowing convenient 
definitions for boundary conditions and current flow. The 
������������ are used in the pn junction example shown in 
the supplementary material to define the boundary conditions, 
which—in step 2—are conductive at the left and right contacts 
and nonconductive at the top and bottom surfaces. That exam-
ple also shows how the mesh can be refined by adding extra 
mesh points near the contacts.

(c)

(e)(d)

(b)

(a)

Fig. 5   Simudo allows users to define complicated domains and 
regions within them, with useful tools to automatically keep track of 
the required cells and facets in each region. a A simulation domain 
divided into overlapping ������� and ������� . Simudo auto-
matically defines the �������� outside the simulation domain and 
provides the helper regions ��������_���� , ��������_����� , 
��������_��� , and ��������_������ , which may not be helpful, 
depending on the shape of the domain. Even before the regions are 
given specific geometries in the simulation domain (e.g., those pic-
tured in a), Simudo’s topology tools allow construction of further 
regions and facets. b–e Derived regions and facets from the domain 
shown in a, with the Simudo command to produce them shown 
underneath, where we shorten ������� to �� . Further example code 
is shown in Fig.  6. b The contact ����������� �� is the signed 
boundary from ������� to ��������_����� , with the sign indicated 
by the arrows. It can be used for determining the current flow out of 
the device. c ������� is ������� with ������� removed. d The 
����������� �� is the signed boundary from ������� to ������� . 
e The ���� operation reverses the sign of the boundary

Fig. 6   Example of using ����������� and ������������ to 
construct regions corresponding to those shown in Fig.  5. The 
� and � objects are containers for cell and facet regions, respec-
tively. They are both initialized empty, and regions in each 
one are created when referenced. The �������� method in 
(�.�������).��������(�.�������) creates the signed boundary 
from ������� to ������� . The ����() method gives the boundary 
with the opposite sign. The actual mapping of these regions into the 
domain occurs in the mesh generation
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4.2 � Extensibility: adding Auger recombination

The initial release of Simudo contains radiative and Shock-
ley–Read trapping and recombination processes in the non-
degenerate limits for VB, CB. The user can easily add modi-
fied physics to their problems, which we demonstrate here 
with an example of adding an Auger recombination process 
to Simudo, with the form

where Cn,Cp are the Auger coefficients, and p0 and n0 are 
the hole and electron concentrations at thermal equilibrium, 
respectively [47]. The code is listed in Fig. 7. The function 
���_����������_����(����) adds a negative local genera-
tion rate in the CB and VB and returns 0 for all other bands. 
This recombination process moves particles between two 
bands, the ���_���� and the ���_���� . In this case, where 
the electrons and holes have opposite charge, the Auger pro-
cess destroys both particles simultaneously; if both carrier 

(34)UA = Cn(n
2p − n2

0
p0) + Cp(p

2n − p2
0
n0),

types involved in the process had the same charge (e.g., for 
a CB-to-IB trapping process), the process would represent a 
particle-number-conserving transfer (rather than a recombi-
nation) from the ���_���� to the ���_���� , with the appro-
priate sign for the recombination process determined by the 
���_����_����������_���� method (inherited from 
��������������� ). This method’s sign convention is that 
the ���_���� always gains carriers through the generation 
process, while the ���_���� gains or loses as required by 
conservation of charge.

4.3 � P[IB]N junction

In Ref.  [59], the authors consider a quantum-dot-based 
IB solar cell with a p-n-IB-p-n structure. They present a 
drift-diffusion model for the IB region only, with the carrier 
density and current density boundary conditions obtained 
from a depletion approximation and law of the junction. This 
model assumes that transport is diffusion-dominated in the 
IB region, and drift can therefore be neglected. This early 
device model gave important insights into the behavior of 
IB devices.

In testing the self-consistency of the model, the authors 
estimate the IB mobility required to remain in the diffusion-
dominated regime, finding that an IB mobility greater than 
62 cm2/V/s is required to make their model consistent. This 
claim raises an immediate question: does something interest-
ing happen when the IB mobility goes below that threshold? 
Since Simudo is a full drift-diffusion device model, we can 
directly answer that question.

We model a similar device with a simpler p-IB-n 
structure. This device has the same band and absorption 

Fig. 7   Example Simudo code that implements Auger recombination 
(Eq.  34), including the ������������������ class. The last four 
lines show the Auger material parameters being set throughout the 
domain

Table 3   Parameters modeled on the device from [59], for Figs. 8–10

Value Definition

EC = 1.67 eV Conduction band edge energy
EI = 1.10 eV Intermediate band energy
EV = 0 eV Valence band edge energy
NC = NV = 5 × 1018 cm−3 CB and VB effective density of states
NI = 1017 cm−3 IB density of states
�C = �V = 2000 cm2/V/s CB and VB mobility
�I = 0.001 − 300 cm2/V/s IB mobility
�CV = 104 cm−1 Absorption coefficient for CV process

�
opt

CI
= (2 − 10) × 10−13 cm2 Optical cross section for CI process

�
opt

IV
= 2 × 10−13 cm2 Optical cross section for IV process

� = 13�0 Dielectric constant
Ts = 6000K Sun temperature
Tc = 300K Cell temperature
X = 1000 Solar concentration factor
wIB = 1.3 μm IB region length
fI,0 = 1∕2 Charge-neutral IB filling fraction
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parameters as the device described in [59], summarized 
in Table 3. The incident light is a blackbody spectrum at 
6000K with a solar concentration factor X = 1000 . The 
device has equal subgap optical cross sections and nearly 
current matched (within 10%) incident photon fluxes for 
the two subgap transitions. In this case, the local IV and 
CI generation rates are nearly identical throughout the IB 
device. The code to set up this problem is included in the 
supplementary material, in ���������.��.

We simulate this device with �I ranging from 0.001 to 
300 cm2/V/s , with resulting J–V curves shown as solid lines 
in Fig. 8a, which is tightly zoomed and still shows only 
minor effects of this over-105 change in �I . In fact, the IB and 
drifts currents contribute negligibly to the transport inside 
the IB region and the current remains diffusion-dominated 
throughout, as shown in Fig. 9a.

The device behavior is approximately independent of 
�I because the IV and CI generation rates are roughly 
equal at each point in the device, so IB transport is not 

required to enable subgap current matching, but this 
behavior is not generic for all IB devices. We illustrate this 
effect by increasing �opt

CI
 by a factor of five (while keep-

ing �opt

IV
 unchanged). In this case, the device is still glob-

ally approximately current matched, but the CI absorp-
tion process occurs preferentially at the top of the device, 
while the IV generation occurs deeper in the IB region. 
The device thus relies on IB transport for the CI and IV 
generation rates to balance over the full device. These 
effects are shown in the dashed curves of Fig. 8, which 
show a stronger dependence on �I than in the matched 
case. When IB mobility is low, the excess CI generation 
in the front of the device instead causes local CI trapping, 
with equivalent local IV trapping toward the back of the 
device, reducing overall current. In the high-mobility case, 
the overall current is slightly larger with the mismatched 
absorptions, due to the increased optical depth. Figure 8b 
shows how Jsc varies with �I in both of these cases, where 
the greater dependence on �I in the mismatched case is 
apparent. Figure 9b shows that in the matched-�opt case, jI 
is never particularly large, while it grows to be five times 

(a)

(b)

Fig. 8   a J(V) curves for devices with parameters of Table  3, under 
X = 1000 suns illumination, modeled on Ref. [24]. Solid lines show 
�
opt

CI
= �

opt

IV
 , as in  [24], while dotted lines show �opt

CI
= 5�

opt

IV
 , which 

causes the CI absorption to be preferentially at the top of the device. 
Note the small vertical scale. The mismatched-�opt case is more 
strongly influenced by the IB mobility �I , but the effects are relatively 
small throughout. b The short-circuit current Jsc for devices with var-
ying �I shows that the matched-�opt case is independent of �I when �I 
is sufficiently large ( ≳ 0.1  cm2/Vs), while the mismatched-�opt case 
again shows a stronger �I-dependence, but note the small vertical 
scale

(a)

(b)

Fig. 9   a Drift (dashed) and diffusion (solid) currents for each band, 
at �I = 100 cm2∕V∕s and �opt

CI
= �

opt

IV
 , with other parameters as in 

Table  3. The IB current density attains its maximum at the marked 
point. b Maximum IB current density as a function of �I for the 
matched and unmatched absorption cross sections, showing the 
increased importance of jI and thus �I in the case where local absorp-
tions are mismatched
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larger in the mismatched case, showing the role of IB cur-
rents in internally balancing the optical absorptions.

In the low-mobility limit, where jI is always small, 
when local CI and IV current generations are imbalanced, 
the filling fraction f of the IB must shift to equalize gen-
eration and recombination at each point [60]. This effect 
is visible in Fig.  10, where at low mobility, the mis-
matched-�opt case has photodepletion at the front side and 
photofilling at the back side, consistent with excess CI 
generation at the front and excess IV generation at the 
back. Both the matched-�opt and the high-mobility mis-
matched-�opt cases maintain an approximately uniform IB 
filling fraction.

These examples together show the utility of Simudo 
to explore the performance of IB devices and resolve an 
assertion made in earlier device models without the benefit 
of a coupled PDD/optics solver.

5 � Conclusion

The availability of a device model for intermediate 
band materials should enable both understanding of this 
new class of materials and optimization of IB devices. 
Simudo’s use of the FEM and its methods for overcom-
ing catastrophic cancellation may also prove useful in 
standard semiconductor device simulation. Simudo has 

been validated against Synopsys Sentaurus for standard 
semiconductor devices and shown to converge more rap-
idly with mesh size. This self-consistent solution of the 
Poisson/drift-diffusion and optical propagation equations 
provides a platform for studying a wide range of optoelec-
tronic materials and devices, including solar cells and pho-
todetectors, with tools to enable extensibility to arbitrary 
generation and recombination models, thermal effects, and 
more. The near-term roadmap for Simudo includes explicit 
heterojunction support and nonlocal tunneling, which will 
be available with future releases at githu​b.com/simud​o/
simud​o. We hope that the free and open source nature of 
this software will enable further development of IB mate-
rials and device simulation more broadly.

Acknowledgements  We acknowledge funding from US Army 
Research Laboratory (W911NF-16-2-0167), the Natural Sciences and 
Engineering Research Council of Canada TOP-SET training program, 
and computing resources from Compute Canada. We thank Emily Zin-
nia Zhang for alpha testing Simudo, contributing the first code imple-
menting trapping processes, and valuable conversations.

References

	 1.	 Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for 
semiconductor device simulation. IEEE Trans. Electron Devices 
30(9), 1031 (1983)

	 2.	 Fichtner, W., Rose, D., Bank, R.: Semiconductor device simula-
tion. IEEE Trans. Electron Devices 30(9), 1018 (1983)

	 3.	 Markowich, P.A.: The Stationary Semiconductor Device Equa-
tions. Computational Microelectronics. Springer, Vienna (1986)

	 4.	 Piprek, J. (ed.): Handbook of Optoelectronic Device Modeling 
& Simulation. CRC Press, Boca Raton (2018)

	 5.	 Schenk, A.: Advanced Physical Models for Silicon Device 
Simulation. Springer, Wien (1998)

	 6.	 Luque, A., Martí, A.: Increasing the efficiency of ideal solar 
cells by photon induced transitions at intermediate levels. Phys. 
Rev. Lett. 78(26), 5014 (1997)

	 7.	 Okada, Y., Ekins-Daukes, N.J., Kita, T., Tamaki, R., Yoshida, 
M., Pusch, A., Hess, O., Phillips, C.C., Farrell, D.J., Yoshida, 
K., Ahsan, N., Shoji, Y., Sogabe, T., Guillemoles, J.F.: Inter-
mediate band solar cells: recent progress and future directions. 
Appl. Phys. Rev. 2(2), 021302 (2015)

	 8.	 Mailoa, J.P., Akey, A.J., Simmons, C.B., Hutchinson, D., 
Mathews, J., Sullivan, J.T., Recht, D., Winkler, M.T., Williams, 
J.S., Warrender, J.M., Persans, P.D., Aziz, M.J., Buonassisi, 
T.: Room-temperature sub-band gap optoelectronic response of 
hyperdoped silicon. Nat. Commun. 5, 3011 (2014)

	 9.	 Berencén, Y., Prucnal, S., Liu, F., Skorupa, I., Hübner, R., 
Rebohle, L., Zhou, S., Schneider, H., Helm, M., Skorupa, W.: 
Room-temperature short-wavelength infrared Si photodetector. 
Sci. Rep. 7, 43688 (2017)

	10.	 Wang, M., Berencén, Y., García-Hemme, E., Prucnal, S., Hüb-
ner, R., Yuan, Y., Xu, C., Rebohle, L., Böttger, R., Heller, R., 
Schneider, H., Skorupa, W., Helm, M., Zhou, S.: Extended 
infrared photoresponse in Te-hyperdoped Si at room tempera-
ture. Phys. Rev. Appl. 10(2), 024054 (2018)

	11.	 Brown, A.S., Green, M.A.: Impurity photovoltaic effect: funda-
mental energy conversion efficiency limits. J. Appl. Phys. 92(3), 
1329 (2002)

Fig. 10   IB filling fraction f(x) at the maximum power point with the 
parameters as in Table  3. With mismatched �opt and low �I , the IB 
filling fraction changes drastically through the depth of the device, 
as the local generation and recombination rates must come into bal-
ance; this balancing increases the local recombination and decreases 
the total current generation, as seen in Fig.  8b. With matched �opt , 
internal IB currents balance the absorptions, and f(x) remains nearly 
constant

https://github.com/simudo/simudo
https://github.com/simudo/simudo


126	 Journal of Computational Electronics (2020) 19:111–127

1 3

	12.	 Martí, A., Antolín, E., Stanley, C.R., Farmer, C.D., López, 
N., Díaz, P., Cánovas, E., Linares, P.G., Luque, A.: Produc-
tion of photocurrent due to intermediate-to-conduction-band 
transitions: a demonstration of a key operating principle of the 
intermediate-band solar cell. Phys. Rev. Lett. 97(24), 247701 
(2006)

	13.	 Wang, W., Lin, A.S., Phillips, J.D.: Intermediate-band photovol-
taic solar cell based on ZnTe:O. Appl. Phys. Lett. 95(1), 011103 
(2009)

	14.	 López, N., Reichertz, L.A., Yu, K.M., Campman, K., Walukie-
wicz, W.: Engineering the electronic band structure for multi-
band solar cells. Phys. Rev. Lett. 106(2), 028701 (2011)

	15.	 Sullivan, J.T., Simmons, C.B., Buonassisi, T., Krich, J.J.: Tar-
geted search for effective intermediate band solar cell materials. 
IEEE J. Photovolt. 5(1), 212 (2015)

	16.	 der Maur, M.A.: A multiscale simulation environment for elec-
tronic and optoelectronic devices. Ph.D. thesis, Universita’ degli 
Studi di Roma Tor Vergata (2008)

	17.	 Birner, S., Zibold, T., Andlauer, T., Kubis, T., Sabathil, M., 
Trellakis, A., Vogl, P.: Nextnano: General purpose 3-D simula-
tions. IEEE Trans. Electron Devices 54(9), 2137 (2007)

	18.	 Clugston, D.A., Basore, P.A.: PC1D version 5: 32-bit solar cell 
modeling on personal computers. In: Twenty Sixth IEEE Pho-
tovoltaic Specialists Conference, pp. 207–210 (1997)

	19.	 Haug, H., Greulich, J.: PC1Dmod 6.2-improved simulation of 
c-Si devices with updates on device physics and user interface. 
Energy Procedia 92(1876), 60 (2016)

	20.	 Varache, R., Leendertz, C., Gueunier-Farret, M., Haschke, J., 
Muñoz, D., Korte, L.: Investigation of selective junctions using a 
newly developed tunnel current model for solar cell applications. 
Sol. Energy Mater. Sol. Cells 141, 14 (2015)

	21.	 Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline 
semiconductor solar cells. Thin Solid Films 361–362, 527 (2000)

	22.	 Alonso-Álvarez, D., Wilson, T., Pearce, P., Führer, M., Farrell, D., 
Ekins-Daukes, N.: Solcore: a multi-scale, Python-based library 
for modelling solar cells and semiconductor materials. J. Comput. 
Electron. 17(3), 1099 (2018)

	23.	 Shockley, W., Read, W.T.: Statistics of the recombinations of holes 
and electrons. Phys. Rev. 87(5), 835 (1952)

	24.	 Marti, A., Cuadra, L., Luque, A.: Quasi-drift diffusion model for 
the quantum dot intermediate band solar cell. IEEE Trans. Elec-
tron Devices 49(9), 1632 (2002)

	25.	 Strandberg, R., Reenaas, T.W.: Drift-diffusion model for interme-
diate band solar cells including photofilling effects. Prog. Photo-
volt.: Res. Appl. 19(1), 21 (2011)

	26.	 Tobías, I., Luque, A., Martí, A.: Numerical modeling of inter-
mediate band solar cells. Semicond. Sci. Technol. 26(1), 014031 
(2011)

	27.	 Yoshida, K., Okada, Y., Sano, N.: Device simulation of intermedi-
ate band solar cells: effects of doping and concentration. J. Appl. 
Phys. 112(8), 084510 (2012)

	28.	 Cuadra, L., Martí, A., Luque, A.: Influence of the overlap between 
the absorption coefficients on the efficiency of the intermediate 
band solar cell. IEEE Trans. Electron Devices 51(6), 1002 (2004)

	29.	 Levy, M.Y., Honsberg, C.: Intraband absorption in solar cells with 
an intermediate band. J. Appl. Phys. 104(11), 113103 (2008)

	30.	 Hu, W.G., Inoue, T., Kojima, O., Kita, T.: Effects of absorption 
coefficients and intermediate-band filling in InAs/GaAs quantum 
dot solar cells. Appl. Phys. Lett. 97(19), 193106 (2010)

	31.	 Strandberg, R.: Analytic JV-characteristics of ideal intermediate 
band solar cells and solar cells with up and downconverters. IEEE 
Trans. Electron Devices 64(5), 2275 (2017)

	32.	 Strandberg, R.: The JV-characteristic of intermediate band solar 
cells with overlapping absorption coefficients. IEEE Trans. Elec-
tron Devices 64(12), 5027 (2017)

	33.	 Lin, A.S., Wang, W., Phillips, J.D.: Model for intermediate band 
solar cells incorporating carrier transport and recombination. J. 
Appl. Phys. 105(6), 064512 (2009)

	34.	 Navruz, T., Saritas, M.: Determination of the optimum mate-
rial parameters for intermediate band solar cells using diffusion 
model. Prog. Photovolt: Res. Appl. 22(5), 593 (2014) 

	35.	 Krich, J.J., Trojnar, A.H., Feng, L., Hinzer, K., Walker, A.W.: 
Modeling intermediate band solar cells: a roadmap to high effi-
ciency. In: Proceedings SPIE 8981, Physics, Simulation, and Pho-
tonic Engineering of Photovoltaic Devices III, p. 89810O (2014)

	36.	 Yoshida, K., Okada, Y., Sano, N.: Self-consistent simulation of 
intermediate band solar cells: effect of occupation rates on device 
characteristics. Appl. Phys. Lett. 97(13), 133503 (2010)

	37.	 Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., 
Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: 
The FEniCS project version 1.5. Arch. Numer Softw. 3(100), 9–23 
(2015)

	38.	 Eymard, R., Gallouët, T., Herbin, R.: Handbook of Numerical 
Analysis, vol. 7, pp. 713–1018. Elsevier, Amsterdam (2000)

	39.	 He, Y., Cao, G.: A generalized Scharfetter–Gummel method to 
eliminate crosswind effects (semiconduction device modeling). 
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 10(12), 
1579 (1991)

	40.	 Nachaoui, A.: Iterative solution of the drift-diffusion equations. 
Numer. Algorithms 21, 323 (1999)

	41.	 Bochev, P., Peterson, K., Perego, M.: A multiscale control volume 
finite element method for advection-diffusion equations. Int. J. 
Numer. Methods Fluids 77(11), 641 (2015)

	42.	 Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.): Discontinu-
ous Galerkin Methods: Theory, Computation, and Applications. 
Lecture Notes in Computational Science and Engineering, vol. 
11. Springer, Berlin (2000)

	43.	 Kumar, G., Singh, M., Bulusu, A., Trivedi, G.: A framework to 
simulate semiconductor devices using parallel computer archi-
tecture. In: Journal of Physics: Conference Series, vol. 759, p. 
012098. IOP Publishing, Bristol (2016)

	44.	 Kumar, G., Singh, M., Ray, A., Trivedi, G.: An FEM based frame-
work to simulate semiconductor devices using streamline upwind 
Petrov–Galerkin stabilization technique. In: 2017 27th Interna-
tional Conference Radioelektronika, pp. 1–5 (2017)

	45.	 Poupaud, F., Schmeiser, C.: Charge transport in semiconductors 
with degeneracy effects. Math. Methods Appl. Sci. 14(5), 301 
(1991)

	46.	 Marshak, A.H., Van Vliet, C.: Electrical current and carrier den-
sity in degenerate materials with nonuniform band structure. Proc. 
IEEE 72(2), 148 (1984)

	47.	 Nelson, J.: The Physics of Solar Cells. Imperial College Press, 
London (2003)

	48.	 McIntosh, K.R., Black, L.E.: On effective surface recombination 
parameters. J. Appl. Phys. 116(1), (2014)

	49.	 Zhao, J., Tan, J., Liu, L.: A second order radiative transfer equa-
tion and its solution by meshless method with application to 
strongly inhomogeneous media. J. Comput. Phys. 232(1), 431 
(2013)

	50.	 Johnson, C.: Numerical Solution of Partial Differential Equations 
by the Finite Element Method. Cambridge University Press, Cam-
bridge (1987)

	51.	 Gockenbach, M.S.: Understanding and Implementing the Finite 
Element Method. SIAM, New Delhi (2006)

	52.	 Jean Donea, A.H.: Finite Element Methods for Flow Problems. 
Wiley, Hoboken (2003)

	53.	 Gaury, B., Sun, Y., Bermel, P., Haney, P.M.: Sesame: a 2-dimen-
sional solar cell modeling tool. Sol. Energy Mater. Sol. Cells 198, 
53 (2019)



127Journal of Computational Electronics (2020) 19:111–127	

1 3

	54.	 Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite 
elements for second order elliptic problems. Numer. Math. 47(2), 
217 (1985)

	55.	 Roberts, J., Thomas, J.M.: In Finite Element Methods (Part 1), 
Handbook of Numerical Analysis, vol. 2, pp. 523–639. Elsevier, 
Hoboken (1991)

	56.	 Cummings, D.J., Law, M.E., Cea, S., Linton, T.: Comparison of 
discretization methods for device simulation. Int. Conf. Simul. 
Semicond. Process. Devices 2009, 1–4 (2009)

	57.	 Synopsys Inc.: Sentaurus Device User Guide, vK-2015. Synopsys 
Inc., Mountain View (2015)

	58.	 Logg, A., Mardal, K.A., Wells, G.N., et al.: Automated Solution 
of Differential Equations by the Finite Element Method. Springer, 
Berlin (2012)

	59.	 Marti, A., Cuadra, L., Luque, A.: Quasi-drift diffusion model for 
the quantum dot intermediate band solar cell. IEEE Trans. Elec-
tron Devices 49, 1632 (2002)

	60.	 Strandberg, R., Reenaas, T.W.: Photofilling of intermediate bands. 
J. Appl. Phys. 105(12), 124512 (2009)

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Simudo: a device model for intermediate band materials
	Abstract
	1 Introduction
	2 Statement of problem
	2.1 Carrier transport and generation
	2.2 Carrier generation and recombination
	2.2.1 Optical carrier generation
	2.2.2 Recombination and trapping

	2.3 Optical equations
	2.4 Poisson’s equation

	3 Numerical method
	3.1 Solution method
	3.2 Poisson equation
	3.3 Transport equations
	3.3.1 Quasi-Fermi level formulation
	3.3.2 Quasi-Fermi level offset partitioning

	3.4 Optics
	3.5 Sentaurus benchmark comparison

	4 Examples and results
	4.1 PN junction and topology definitions
	4.2 Extensibility: adding Auger recombination
	4.3 P[IB]N junction

	5 Conclusion
	Acknowledgements 
	References




