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ABSTRACT
Perturbative nonlinear optical spectroscopies are powerful methods to understand the dynamics of excitonic and other condensed phase
systems. Feynman diagrams have long provided the essential tool to understand and interpret experimental spectra and to organize the
calculation of spectra for model systems. When optical pulses are strictly time ordered, only a small number of diagrams contribute, but in
many experiments, pulse-overlap effects are important for interpreting results. When pulses overlap, the number of contributing diagrams
can increase rapidly, especially with higher order spectroscopies, and human error is especially likely when attempting to write down all the
diagrams. We present an automated Diagram Generator (DG) that generates all the Feynman diagrams needed to calculate any nth-order
spectroscopic signal. We characterize all perturbative nonlinear spectroscopies by their associated phase-discrimination condition as well as
the time intervals where pulse amplitudes are nonzero. Although the DG can be used to automate impulsive calculations, its greatest strength
lies in automating finite pulse calculations where pulse overlaps are important. We consider third-order transient absorption spectroscopy
and fifth-order exciton–exciton interaction 2D (EEI2D) spectroscopy, which are described by six or seven diagrams in the impulsive limit,
respectively, but 16 or 240 diagrams, respectively, when pulses overlap. The DG allows users to automatically include all relevant diagrams at
a relatively low computational cost, since the extra diagrams are only generated for the inter-pulse delays where they are relevant. For EEI2D
spectroscopy, we show the important effects of including the overlap diagrams.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0024105., s

I. INTRODUCTION

Nonlinear optical spectroscopies (NLOSs) are powerful tools
for elucidating excited state dynamics of a wide variety of condensed
phase systems and have been particularly important for determin-
ing the evolution of excitonic systems.1–12 Interpretation of data-rich
NLOS signals is centered on Feynman diagrams, which conveniently
graphically summarize time-dependent perturbation theory contri-
butions to the signals.13 These diagrams give a visual understand-
ing of what types of excited- and ground-state dynamics and/or

coherences are probed and can be straightforwardly turned into
calculations of contributions to signals. In many cases, diagrams
can be determined to give zero contribution without a complicated
calculation, making theoretical interpretation easier and calculation
less expensive.

When pulse durations are shorter than system dynamics—
the impulsive limit—the number of contributing diagrams is often
small, especially for third-order spectroscopies. It has been easi-
est to build intuition about the experimental signatures of particu-
lar excitonic processes by considering the impulsive limit.2,3,5–7,14–21
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When pulse durations are similar to the timescale of system evo-
lution, however, the effects of pulse overlaps—where the tail of a
nominally earlier pulse arrives after the beginning of a nominally
later pulse—become important to accurately model and understand
experimental results.22–34 Considering such processes requires many
more contributing diagrams. Higher-order spectroscopies, in both
the impulsive and pulse-overlap limits, also involve rapidly increas-
ing numbers of contributing diagrams. Human error and fatigue in
determining these diagrams accurately become increasingly likely as
their numbers proliferate.

We present here an automated Feynman Diagram Generator
(DG), which allows convenient, fast, and accurate determination of
the diagrams contributing to a particular spectroscopy. We describe
all perturbative nonlinear spectroscopies by their associated phase-
discrimination conditions. These conditions allow description of
non-colinear phase-matching, colinear phase-cycling, and combi-
nations of the two.13,16,21,35–40 Users input those conditions and the
time intervals in which their pulses are nonzero, and the DG pro-
duces a list of contributing diagrams. This list can be passed directly
to calculation engines to predict the associated spectroscopic sig-
nals or can be drawn in the standard diagrammatic format for
review. The DG is part of a set of NLOS tools called the Ultra-
fast Spectroscopy Suite (UFSS), which also contains methods to
generate Hamiltonians or Liouvillians for vibronic systems and to
calculate the contributions from each diagram,41,42 but its output
diagrams can be used with other computational tools or analytic
methods to calculate spectroscopic signals.7,19,23,30,31,43–52 The DG
is free and open-source software written in Python, available for
download from GitHub.

The DG (also the larger UFSS) is designed to make simple the
inclusion of the effects of finite-duration pulses in NLOS. While
modeling often considers the impulsive limit, pulse-overlap effects
can dominate third-order signals such as two-dimensional pho-
ton echo (2DPE) spectroscopy, even outside of what is commonly
thought of as the pulse-overlap window.33 2DPE is usually calcu-
lated using six time-ordered diagrams (three for the rephasing and
three for the non-rephasing pathway). When pulses overlap, up to
16 diagrams (shown in Fig. 1) contribute to the signal.53 These 16
diagrams have been written down by hand and used for calculations
in the past.

In higher-order methods, such as fifth-order exciton–exciton
interaction 2D (EEI2D) spectroscopy, there are seven Feynman dia-
grams in the impulsive limit.20 We show that outside the impulsive
limit, EEI2D requires up to 240 Feynman diagrams. This number
of diagrams is too large for generation by hand, and as a result,
we do not believe that a calculation with all these diagrams has
previously been attempted in the perturbative limit. References
12 and 54 consider finite pulse effects from time-ordered diagrams
for several fifth-order spectroscopies. We use EEI2D as our key
example of the application of automated diagram generation, show-
ing that (1) these extra overlap diagrams can be generated and their
contributions calculated with a surprisingly small extra computa-
tional cost and that (2) finite pulse effects arising from non-time-
ordered diagrams can provide significant modifications to a sample
EEI2D spectra, which can be important for the interpretation of
experimental results.

The DG automatically creates all the diagrams that sat-
isfy a given phase-discrimination condition. Since the DG is

FIG. 1. All diagrams needed to calculate the rephasing 2DPE signal. The box
encloses the three time-ordered diagrams that are typically calculated. The other
diagrams contribute to the signal when two or more pulses overlap. These dia-
grams were automatically generated and drawn using the diagram generator
(DG). The DG can produce both double-sided diagrams, as shown, and pairs of
single-sided diagrams for equivalent wavefunction calculations.

computationally inexpensive compared to evaluating the contribu-
tion of each diagram, in UFSS, the DG is run for each set of the
desired pulse delays. It determines whether pulses overlap, and thus
whether overlap diagrams contribute, allowing computation of only
causal diagrams for each set of pulse delays. This determination pro-
vides significant computational time savings, since the large number
of overlap diagrams only need to be calculated at the (usually small)
proportion of pulse delays where they contribute. We further show
that heavy-tailed pulse envelopes, such as Lorentzians, require calcu-
lation of overlap diagrams out to longer delay times than Gaussian
pulse envelopes.

We begin with an overview of perturbative spectroscopy calcu-
lations in Sec. II in order to establish the construction of Feynman
diagrams, with a unified perspective on both phase matching and
phase cycling spectroscopies. We describe the algorithm of the DG
in Sec. III, including optional methods to reduce the number of dia-
grams, depending on the system and spectroscopy considered. We
demonstrate the utility of the DG by exploring EEI2D spectroscopy
in Sec. IV. We consider the same model system as in Ref. 55 and
show that when optical pulses have slightly longer durations than
those considered in that work, neither the impulsive limit nor the
time-ordered diagrams with pulse-shape effects included accurately
predict spectra. The calculation with all 240 diagrams requires less
than twice the time as that required for the calculation using only
the seven time-ordered diagrams, despite considering 34 times as
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many diagrams. These results underscore the importance of includ-
ing all the additional 233 overlap diagrams, as well as the utility of
the DG in not only generating these diagrams but also automatically
determining the conditions in which they contribute.

II. NONLINEAR SPECTROSCOPY AND FEYNMAN
DIAGRAMS

We begin by establishing the standard perturbative frame-
work of nonlinear optical spectroscopy, from which Feynman dia-
grams are defined.13 Consider a system with density matrix ρ, which
evolves in the absence of perturbation according to

ρ(t) = T0(t, t′)ρ(t′),

where T0 is a time evolution operator. We restrict the following
discussion to the case of Hamiltonian systems or Markovian open
systems in which T0(t, t′) = T0(t − t′), which must be known
or approximated in order to complete calculations, but the result-
ing diagrams are broadly applicable to non-Markovian situations as
well. For the purposes of diagram generation, however, we simply
need to assume that T0 exists. We also define the differential time
evolution operator L0, so

dρ(t)
dt
=L0ρ(t).

The perturbative optical fields are described as classical elec-
tric fields E(t), which interact with the system in the electric-dipole
approximation through the perturbation Hamiltonian

H′(t) = −μ ⋅ E(t), (1)

where μ is the electric dipole operator. Then, the time evolution of
the system is

dρ(t)
dt
=L0ρ(t) −

i
h̵
[H′(t), ρ(t)]. (2)

This form is the basis for diagrammatic perturbation theory in E(t).
We describe E(t) as a sum over L pulses, where each pulse is

denoted by a lowercase letter starting from a. A typical third-order
signal is calculated using up to four pulses. We write the electric
field as

E(t) = ∑
j=a,b,...,L

ejεj(t) + e∗j ε
∗
j (t), (3)

where ej is the possibly complex polarization vector and the ampli-
tude εj of each pulse is defined with envelope Aj, central frequency
ωj, wavevector kj, and phase ϕj as

εj(t) = Aj(t − tj)e−i(ωj(t−tj)−kj ⋅r−ϕj),

where tj is the arrival time of each pulse. We make the physical
assumption that each pulse is zero outside the finite interval [tj ,min,

tj ,max]. The DG uses this range to determine when pulses over-
lap; the form of Aj(t) is unimportant for diagram generation. The
light–matter interaction is a sum over the rotating (εi) and counter-
rotating (ε∗i ) terms. In the rotating wave approximation (RWA), the
rotating terms excite the ket-side and de-excite the bra-side of the
density matrix, respectively, and the counter-rotating terms excite
the bra-side and de-excite the ket side, respectively.13

We treat the effect of the optical fields using standard time-
dependent perturbation theory and assume that at time t0, the
system is in a stationary state of L0, which is ρ(0). Then,

ρ(t) = ρ(0) + ρ(1)(t) + ρ(2)(t) + . . . , (4)

where13

ρ(n+1)(t) = ∫
∞

0
dt′T0(t′)[

−i
h̵
μ ⋅ E(t − t′), ρ(n)(t − t′)]. (5)

Using Eq. (3), we define ρ(n+1)(t) as a sum over four types of terms,

ρ(n+1)(t) =∑
j
(Kj + Kj∗ + Bj + Bj∗)ρ(n)(t), (6)

where K j and Bj are superoperators representing ket- and bra-side
actions, respectively, of the rotating terms of pulse j on ρ, while
K j∗ and Bj∗ give the equivalent counter-rotating terms. By inspec-
tion of Eq. (5), all four types of terms in Eq. (6) can be compactly
defined as

Oj(∗) = ηO
i
h̵ ∫

∞

0
dt′T0(t′)(μO ⋅ e(∗)j ε(∗)j (t − t

′)), (7)

where O = K, B, ηK = 1, and ηB = −1, and we define dipole superoper-
ators μK ρ ≡ μρ and μBρ ≡ ρμ. The operators {Oj(∗)} are the building
blocks for all perturbative spectroscopies. The full ρ(n) is constructed
from the unperturbed state ρ(0) as

ρ(n)(t) =
⎡⎢⎢⎢⎢⎣
∑

j=a,b,...,L
(Kj + Kj∗ + Bj + Bj∗)

⎤⎥⎥⎥⎥⎦

n

ρ(0), (8)

which involves (4L)n terms when the exponent and sum are fully
expanded. Each of these terms is a sequence of n applications
of Oj(∗) and can be represented by a Feynman diagram. Most of
these diagrams are unimportant for any given spectroscopy, and
the subset of diagrams that contributes to a particular experiment
is determined by the set of optical pulses and a phase-discrimination
condition.

Regardless of the computational details used to calculate the
{Oj(∗)}, all perturbative calculations can be represented and orga-
nized using the same Feynman diagrams, and thus, the DG is useful
for any perturbative spectroscopy algorithm. For example, the UFSS
contains two methods for calculating the action of the Oj(∗) opera-
tors, which are derived for closed systems in Ref. 41 and for open
systems in Ref. 42. The integral form of the {Oj(∗)} in Eq. (7) is con-
venient for UF2 and is the open-system analog of similar expressions
derived for wavefunctions.43,48
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The two most widely used phase-discrimination conditions
are phase matching and phase cycling. Phase-matching conditions
are achieved by using pulses that travel along different directions
denoted by wavevectors kj, converging to interact with a sample that
is assumed to be uniform over a volume large compared to the wave-
length of the pulses.13 The pulses induce a polarization field in the
sample P(t) = ⟨μρ(t)⟩, which produces radiation in all directions.
A detector placed in a direction that satisfies the phase-matching
condition kd =∑j mjkj, where mj are integers, is sensitive to a polar-
ization field that is described by only a subset of diagrams. Often one
is interested in the lowest-order signal in perturbation theory that
contributes to the given phase-discrimination condition. Hetero-
dyne detection with a local oscillator (LO) allows full determination
of the amplitude and phase of the emitted radiation.

For example, 2D photon echo (2DPE) signals involve three
pulses, a, b, and c, that interact with the sample and a fourth LO
pulse d. The 2DPE rephasing and non-rephasing signals are mea-
sured with detectors placed in the kd = −ka + kb + kc (see Fig. 1) and
kd = ka − kb + kc directions, respectively. These signals are calculated
using

P(3)kd
(t) = ⟨μρ(3)kd

(t)⟩

P̃(3)kd (ω) = ∫
∞

−∞
dteiωtP(3)kd

(t)

S(3)kd
(ω) = Im[ε̃∗d (ω)ed ⋅ P̃

(3)
kd (ω)],

where S(3)kd
(ω) are the signals and ρ(3)kd

(t) is the portion of ρ(3)(t)
that produces radiation in the kd direction; the primary purpose of
diagrammatic perturbation theory is to organize the efficient calcu-
lation of ρ(3)kd

(t) without needing to calculate all contributions to
ρ(3)(t).

An alternative phase discrimination method uses phase cycling
over the relative phases of collinear pulses. This method generally
detects a signal proportional to an excited state population, such as
fluorescence or photocurrent.16,35,38,39 A fourth-order signal S(4)d (t)
in such a setup is calculated as

S(4)d (t) = ⟨Qρ
(4)
d (t)⟩,

where Q is a projection operator onto the relevant excited electronic
states and ρ(4)d (t) includes only those contributions to ρ(4)(t) that
contribute to the chosen phase-cycling condition. Combinations of
phase-matching and phase-cycling are also possible and just as easily
described in the DG.56

For example, the 2DPE rephasing signal is composed of the 16
diagrams in Fig. 1, which were automatically generated and drawn
using the DG. If, however, tb ,min > ta ,max and tc ,min > tb ,max (that is,
the pulses are time ordered), then only three diagrams contribute, as
shown in the black box.

The operators {Oj(∗)} as an abstract concept have previously
been introduced in various forms.43,48 To our knowledge, they have
not been used for the purposes of automated calculations before.
In Sec. III, we describe how users input the pulse intervals and
phase discrimination conditions and present the algorithm that pro-
duces the relevant diagrams. In Sec. IV, we demonstrate the DG by

using up to 240 diagrams and show the importance of including the
full set of diagrams when performing simulations with finite pulse
durations.

III. DIAGRAM GENERATOR
The user of the DG inputs the desired phase discrimination

condition and pulse intervals, and the DG automatically generates
all Feynman diagrams. The DG is much less computationally expen-
sive than the evaluation of the contribution from each diagram, so
it is intended to be rerun for each set of the desired pulse delays.
The DG then returns pulse-overlap diagrams only when the pulse
overlaps allow them to contribute. This package generates diagrams
as a list of the operators {Oj(∗)} defined in Eq. (7). The Ultra-
fast Ultrafast (UF2) and Runge–Kutta–Euler (RKE) tools outlined
in Ref. 42 and included in UFSS are designed to interpret this list
and produce spectra. Alternatively, the generated diagrams can be
exported to another calculation engine. The DG can also draw them
for inspection.

Feynman diagrams are determined by the number of pulses and
the phase-discrimination condition. Phase-discrimination deter-
mines the number of interactions with the rotating or counter-
rotating part of each pulse that contributes to the measured signal.
The user inputs the number of each type of interaction as a list
of tuples, [(nar ,nac), (nbr ,nbc), . . . , (nLr ,nLc )]. This list corresponds to
detection with kd = ∑j=a,b,...,L(n

j
r −n j

c )k j in the case of phase match-
ing and to detection of signals in phase with ∑j=a,b,...,L(n

j
r − n j

c )ϕj,
where ϕj are the modulated phases, in the case of phase cycling.35

The order of spectroscopy is given by ntotal = ∑j=a,b,...,L n
j
r + n j

c .
In order to determine which diagrams are causally allowed, the
user must also input the time intervals [tj ,min, tj ,max] when each
pulse is nonzero as a list. The user updates this list for each set of
pulse delay times desired. The number of diagrams that must be
considered when dealing with finite pulses expands dramatically as
one considers higher-order signals, such as exciton–exciton interac-
tion 2D spectra (the three-pulse fifth-order signal measured in the
kd = −2k1 + 2k2 + k3 direction; see Sec. IV), where the number
of time-ordered diagrams is 7.55 However, when all pulses overlap,
there are 240 diagrams.

We outline the steps for determining all diagrams that con-
tribute to the signal for a given pulse configuration in Fig. 2, which
includes the general scheme and two examples.

(1) Starting from [(nir ,nic)]i=a,b,...,L, we begin with a canonical list
of interactions, where we list the pulses in the order of the
pulse number starting from a, with rotating terms coming
before counter-rotating terms (see Fig. 2 for examples). The
length of the resulting list is ntotal. For each pulse, there are n j

r

repetitions of “j” with the rotating term and n j
c repetitions of

“j∗” with the counter-rotating term, as shown in Fig. 2. We
then generate all unique permutations of this canonical list of
interactions. The number of unique permutations is

ntotal!
Πinir!nic!

.
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FIG. 2. Graphical outline of automated diagram generation. Left column is the general case, while the center and right columns show specific examples. User inputs of pulse
intervals and phase discrimination of the desired experiment are in the top box. The steps of the algorithm, numbered in the arrows, are described in the main text. After step
3, the numbers in the boxes indicate the number of diagrams at that stage. Blue boxes show results with non-overlapping pulses. Green ones show results with pulses a and
b overlapping, purple ones show results with pulses b and c overlapping, and gold ones show results with pulses a, b, and c all overlapping. Black bars in the bottom row
graphically indicate these pulse overlaps.

(2) Using the list of pulse intervals {[tj,min, tj,max]}j=a,b,...L, non-
causal orderings are removed. For each permutation of the
time-ordered list, we check whether tmin of each pulse occurs
before tmax of each following pulse in the list and remove the
permutation if not.

(3) For each permutation from step 2, we generate all the allowed
diagrams that satisfy the phase-discrimination conditions.
Each interaction can occur on either the ket-side (Kj(∗) ) or
the bra-side (Bj(∗) ), giving 2ntotal diagrams associated with each
permutation from step 2. For example, the interaction a∗ can
act as Ka∗ or as Ba∗ , while the interaction b can act as either
Kb or Bb.

At this point, we have the maximum number of dia-
grams that could contribute to the calculation, given the
phase-discrimination condition and pulse intervals. How-
ever, many of these diagrams do not contribute under com-
mon assumptions. Using some minimal information about
the material system that is being modeled, many of these
diagrams can be removed in the optional step 4.

(4) (Optional)

(a) Keep only diagrams that remain in accessible states. For
instance, consider optical spectroscopy of a system that has
three optically separated manifolds, each separated by an
energy gap Eg . If the temperature is much less than Eg , we
can approximate that the initial thermal state is entirely
in the ground-state manifold. Any diagram that includes
excitation above the highest manifold or de-excitation
from the lowest manifold is removed. We track the num-
ber of optical excitations by assigning manifold indices for
both the ket and bra sides of a density matrix. We say
that the initial density matrix ρ(0) is entirely composed
of ground-state populations, and therefore, it has man-
ifold indices [0, 0]. We then assign the following rules
describing the action of the Oj(∗) operators:

Kj : [+1, 0],
Kj∗ : [−1, 0],
Bj : [0,−1],
Bj∗ : [0, +1].

We apply these rules in succession for a diagram and track
the indices [i, l] after each interaction. If either i or l drop
below 0 or rise above the maximum allowed manifold, the
diagram is removed. When the manifolds are coupled by
relaxation processes, we no longer remove diagrams that
rise above the allowed maximum manifold, since popu-
lation can decay to a lower manifold and then be excited
up again by a subsequent interaction. We do still remove
diagrams where i or l drop below zero.

(b) The integer logic of part 4(a) is also helpful in determining
which diagrams contribute to the final signal. For spec-
troscopies that measure the emitted polarization field, we
are interested in the object Tr[μρ]. Typically in optical
spectroscopy, μ connects only adjacent manifolds (either
because this is an accurate model for the dipole opera-
tor or because the measurement bandwidth only supports
one-manifold transitions). The components of ρ that con-
tribute are then coherences between adjacent optical man-
ifolds. Therefore, we filter out all diagrams except those
that end in a state [i + 1, i] (note that the diagrams that
end in [i, i + 1] are physically valid; however, we do
not calculate them, as they are the Hermitian conjugate
pairs of the calculated diagrams13). Note that we again
cannot apply this filter when T includes inter-manifold
relaxation.

(c) If the final observable is instead linked to excited-state
populations, as in the case of fluorescence or photo-
current detection, we look only for diagrams that end in
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a population [i, i], where i > 0. Again, we cannot apply this
filter when T includes inter-manifold relaxation.

Each of the diagram reductions from step 4 can be turned off with a
flag or modified to suit an accurate model for the system in question.
For example, in vibrational spectroscopy, rule 4(a) does not apply,
but rules 4(b) or 4(c) (or modifications of them) may still apply.
We include a variety of examples of step (4) in the Jupyter note-
book DiagramGeneratorExample.ipynb, including an example
of infrared vibrational transient absorption that cannot remove any
of the causal diagrams and must use all 16 (48 for overlapping pulses)
diagrams that come from step (3).

Thus far, we have described how the DG creates the double-
sided Feynman diagrams associated with density-matrix-based
calculations. The DG can also create the one-sided Feynman dia-
grams used for wavefunction-based calculations.13,48 This procedure
begins by creating all relevant double-sided diagrams. Each double-
sided diagram is converted to a pair of one-sided diagrams associ-
ated with the bra and ket wavefunctions. Since wavefunction-based
calculations do not impose time-ordering between the bra and ket
sides,13 several of the double-sided diagrams map onto the same pair
of single-sided diagrams. After creating all the pairs of single-sided
diagrams, we eliminate duplicates to avoid over-counting some
pathways.

The DG both produces a full set of contributing diagrams to
be calculated and updates that list as the pulse timings change.
In the example three-pulse fifth-order spectroscopy considered in
Sec. IV, the pulse delays vary to produce frequency-domain sig-
nals. Only a small number of pulse configurations have all three
pulses overlapping. In those cases, 240 diagrams must be calcu-
lated, but as the pulse delays change, calculations can be reduced
to 54, 21, or seven diagrams, all occurring automatically. Includ-
ing overlap diagrams increases the number of required diagrams
by a factor of over 30, but since diagrams are only included when
pulse delays are required, calculations of frequency-domain spec-
tra are only 1.5–5 times longer than those including only the seven
time-ordered diagrams, depending upon which pulse delays are
calculated.

IV. IMPORTANCE OF OVERLAP DIAGRAMS
Spectra are often calculated assuming impulsive pulses. Even

when finite pulse shapes are considered, the overlap diagrams are
often neglected, as in the only two studies of finite pulses in fifth-
order spectroscopies of which we are aware.12,54 In some cases,
these approximations are warranted, but sometimes, the overlap
diagrams are important to understand signals both quantitatively
and qualitatively. Here, we demonstrate an example where neglect-
ing overlap diagrams leads to significant artifacts in the predicted
spectra.

We consider a model system used in Ref. 55 to study exciton–
exciton annihilation by three-pulse exciton–exciton interaction 2D
(EEI2D) spectroscopy. The model consists of a dimer of two
coupled three-level systems (3LS). The Hamiltonian takes the
form

H0 = Egg(∣gg⟩⟨gg∣) + Eeg(∣eg⟩⟨eg∣ + ∣ge⟩⟨ge∣)
+ J(∣eg⟩⟨ge∣ + h.c.) + Eee(∣ee⟩⟨ee∣)
+ Efg(∣ fg⟩⟨ fg∣ + ∣g f ⟩⟨g f ∣) + K(∣ fg⟩⟨ee∣ + ∣g f ⟩⟨ee∣ + h.c.)
+ Eef (∣ fe⟩⟨ fe∣ + ∣ef ⟩⟨ef ∣) + L(∣ fe⟩⟨ef ∣ + h.c.)
+ Eff (∣ ff ⟩⟨ ff ∣),

where Eij = Ei + Ej, with all the constants defined in Table I, |g⟩,
|e⟩, and | f ⟩ are the ground, singly excited, and doubly excited states,
respectively, of each 3LS, and |uv⟩ = |u⟩1 ⊗ |v⟩2. Following Ref. 55,
we consider relaxation processes at zero temperature for each iso-
lated monomer unit from | f ⟩i to |e⟩i at rate kM and neglect relax-
ation from |e⟩i to |g⟩i, since it is not important for exciton–exciton
interactions. Reference 55 included relaxation using the stochas-
tic Schrodinger equation, while we include relaxation using the
Lindblad formalism with

ρ̇ = − i
h̵
[H0, ρ] − ∑

n≠m
knmL[∣m⟩⟨n∣]ρ,

where |m⟩ and |n⟩ are eigenstates of H0 and the Lindblad superop-
erator L[O] is defined by

L[O]ρ = OρO† − 1
2
O†Oρ − 1

2
ρO†O.

We follow Ref. 55 by projecting the monomer relaxation rates into
the eigenstates |n⟩ with energy En. New relaxation rates coupling the
eigenstates of H0 are defined as

knm =(∣⟨n∣ fg⟩∣2∣⟨eg∣m⟩∣2 + ∣⟨n∣g f ⟩∣2∣⟨ge∣m⟩∣2

+ ∣⟨n∣ fe⟩∣2∣⟨ee∣m⟩∣2 + ∣⟨n∣ef ⟩∣2∣⟨ee∣m⟩∣2)kM .

The resulting rates range from 0.0075 fs−1 to 0.0016 fs−1 where the
smallest rate corresponds to decay from the lowest-energy double-
exciton state to the lowest-energy single-exciton state.

EEI2D is designed to probe the dynamics of the doubly excited
states. Diagonalizing H0 shows that the two optically bright doubly
excited states are separated by 0.35 eV, corresponding to an oscilla-
tion period of To = 12 fs, which is the fastest important oscillation in
this system. One generally assumes that pulses significantly shorter
than this period will be well-approximated by impulsive pulses but
that pulses that interact with the system on a comparable timescale

TABLE I. Values used in the Hamiltonian H0 and bath coupling rates for the model
dimer system studied using EEI2D (adapted from Ref. 55).

Eg Ee Ef
Energy (eV) 0.0 1.0 2.2

J K L
Coupling (eV) 0.2 0.1 0.05

kM
Rate (fs−1) 0.015
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require more careful treatment. In this section, we study the effects
of using Gaussian pulses with a full-width half-maximum (FWHM)
of 15 fs, with a comparison to Lorentzian pulses at the end.

The perturbative calculations of optical signals were performed
using the UF2 method detailed in Ref. 42. UF2 calculates the fifth-
order polarization signal as a function of the delay time τ between
pulses a and b and the delay time T between pulses b and c as

P(5)kd
(τ,T, t) = i⟨μρ(5)kd

(t)⟩,

where t is the time measured after the arrival of pulse c. The 2D
frequency–frequency correlation spectrum is calculated as

P̃(5)kd (ωτ ,T,ωt) =
1

2π ∫
∞

−∞
dτe−iωττ ∫

∞

−∞
dteiωt tP(5)kd

(τ,T, t),

which is approximated using the discrete Fourier transform. We
use P̃(5)kd (ωτ ,T,ωt) as a proxy for the signal field, which would,
in practice, be detected through heterodyne detection with a local
oscillator.

We compare calculations of EEI2D spectra using three approx-
imations: impulsive pulses, finite pulses with only time-ordered dia-
grams, and finite pulses including all diagrams. Figure 3(a) shows

the impulsive limit with a delay time of T = 60 fs. In keeping
with Ref. 55, we perform all calculations with τ and t each rang-
ing from 0 to 823 fs and multiply the τ and t axes with a Gaussian
window function of σ = 200 fs to avoid ringing effects from the
discrete Fourier transform. We calculate spectra for 275 values of
τ and t, which are more than sufficient to produce well-resolved
frequency–frequency spectra. Reference 55 performs calculations in
the impulsive limit and states that calculations using time-ordered
diagrams with 5 fs FWHM pulses are visually nearly identical to the
impulsive limit, which we also find. Finite pulse effects are, unsur-
prisingly, unimportant when the pulse durations are shorter than
To, the fastest timescale in the system. We use this model system
to illustrate the differences that occur with only modestly longer
pulses.

We consider Gaussian pulses with FWHM of 15 fs, similar to
To. Figure 3(b) shows calculations using finite pulses but only the
seven time-ordered diagrams, showing clear differences from the
impulsive limit in 3(a). Figure 3(c) shows results using the same
finite pulses but including all the 233 additional pulse overlap dia-
grams at delay times when they are required. The visual difference
between Figs. 3(b) and 3(c) demonstrates the importance of includ-
ing pulse-overlap diagrams in addition to finite pulse effects in time-
ordered diagrams. Simply adding finite pulse effects to the time-
ordered diagrams is not sufficient for making good spectroscopic
predictions.

FIG. 3. (a)–(c) Real part of the EEI2D
spectrum at a delay time of T = 60 fs
for a dimer of three-level systems with
a relaxation rate of 0.015 fs−1, as
described in the text, with different elec-
tric field shapes. Horizontal axes show
the Fourier transform of the delay time
τ between the first and second pulses.
Vertical axes show the detection fre-
quency. EEI2D spectra were calculated
for 275 × 275 values of τ, t and then
Fourier transformed. Note the signed-
logarithmic color scale. (a) Impulsive
calculation, which requires only time-
ordered diagrams, (b) 15 fs FWHM
Gaussian pulses using only time-ordered
diagrams, and (c) 15 fs FWHM Gaus-
sian pulses including all 54 diagrams that
contribute to this T. (a)–(c) are normal-
ized independently so that the largest
peak has a magnitude of 1. (d) Maxi-
mum of the absolute value of the sig-
nal contained within the black boxes in
(a)–(c) as a function of delay time T.
Dashed line shows T used in (a)–(c). The
inset shows a longer time window and
the steady state that is reached by 1 ps.
The impulsive and time-ordered calcula-
tions both quantitatively and qualitatively
deviate from the full calculation.
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Figure 3(d) shows the magnitude of the cross peak contained
in the solid box in panels (a)–(c), and the oscillation period To is
clearly visible. The oscillations at that peak correspond to absorp-
tion into one and emission from another doubly excited eigenstate
of H0. This peak is clearly visible in the impulsive limit in Fig. 3(a)
but is dominated by significant horizontal streaks in Fig. 3(b), which
bleed over from the stronger peak at h̵ωτ = 2.3 eV. This significant
extension of the peaks in the ωτ direction is an artifact of neglect-
ing the overlap diagrams, demonstrated by its removal in Fig. 3(c).
Figure 3(d) shows that both the visibility of the oscillation and the
overall evolution of the envelope are qualitatively different in the
three studied approximations. We vary T from 0 ps to 2 ps for a
total of 2667 different values of T. At long T (shown in the inset), the
doubly excited states decay and there is a static excited state absorp-
tion signal from the singly excited population, with the timescale
of saturation and oscillation decay matching the slowest knm.
Neither impulsive nor time-ordered calculations with finite pulses
accurately predict this EEI2D spectrum despite using an ultrafast
optical pulse.

Note that the differences between the full calculation and the
one using only the time-ordered diagrams persist even with delay
times T much greater than the pulse durations. In constructing
P̃(5)kd (ωτ ,T,ωt), contributions with τ, t smaller than the pulse dura-
tion are always included, making pulse-overlap effects apparent
even at long T and requiring calculation of the overlap diagrams.
Since the DG only produces the extra diagrams for time delays that
merit their evaluation, the full calculation is not much more expen-
sive than the case with seven time-ordered diagrams. For example,
the calculation of the green and orange curves in Fig. 3(d), out to
350 fs, took 33 min and 17 min on a 2017 MacBook Pro, respec-
tively, and included over 120 000 combinations of τ and T. The
equivalent curves out to 2 ps, as in the inset, required 155 min

and 93 min with the same density of T points; those involved
over 700 000 pulse delay combinations. Even though the full cal-
culation includes contributions from 34 times more diagrams, it
required less than twice the time to run than the time-ordered
calculation.

The DG determines which diagrams contribute based solely
upon the user-chosen intervals where the pulses are nonzero. For
well-behaved pulses such as Gaussians with standard deviation σ,
convergence of spectra within 1% is obtained for the results in Fig. 3
when the pulses are declared to be zero after 4σ. However, for pulses
with heavy tails, extra care must be taken to determine the correct
pulse interval. We compare Gaussian pulses, as used in Fig. 3, to
Lorentzian pulses, which have heavy tails. Figure 4 shows the weight
D ∫dωt∣P̃(5)d (τ,T,ωt)∣ for each of the 240 diagrams d as a function of

τ at T = 100 fs for the system in Fig. 3, where P̃(5)d is the signal due to
a single diagram and D is chosen so that at τ = 0, the largest weight of
a time-ordered diagram is 1. We consider Gaussian and Lorentzian
pulse envelopes with the same FWHM of 15 fs.

We observe that for both sets of pulses, at τ = 0, all 47 a, b
overlap diagrams (green) have similar weight and therefore must
be calculated, and the same is true for all 233 overlap diagrams at
τ = T = 0 (not shown). With Gaussian pulses, all the overlap dia-
grams decay rapidly when τ exceeds the nominal pulse duration and
are negligible when τ > 30 fs. In contrast, with Lorentzian pulses
of the same nominal duration, even some diagrams where pulse c
arrives before pulse a or b (shown in gold) are surprisingly close in
weight to the time-ordered diagrams at τ = 0, even though the center
of pulse c arrives 100 fs after the first two. Furthermore, some of the
a, b overlap diagrams (green) continue to have weight equal to time-
ordered diagrams (blue) for τ approaching 60 fs, four times the pulse
FWHM; given the large number of overlap diagrams, their contribu-
tions must be calculated even for considerably larger τ. It is clear that

FIG. 4. Weight of all 240 EEI2D dia-
grams for the same system as in Fig. 3 at
T = 100 fs as a function of τ for 15 fs
FWHM pulses with (a) Gaussian and (b)
Lorentzian time-domain envelopes. Blue
lines show the weight of the seven time-
ordered diagrams. Green lines show the
weight of the 47 additional diagrams that
contribute when pulses a and b over-
lap. Panel (b) also shows the weights of
176 diagrams that contribute only when
all three pulses overlap (gold), whose
weights are too small to appear in (a);
10 more orange lines have weights less
than 10−3. Diagram weights are normal-
ized so that the strongest time-ordered
diagram has a weight of 1 at τ = 0. Line
colors for each set of diagrams match
those in Fig. 2.
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in the case of Lorentzian or other heavy-tailed pulse envelopes, care
must be taken in choosing the pulse intervals for use with the DG,
and users are encouraged to ensure that their results are converged.
Choosing a large pulse interval ensures accuracy but increases the
computational cost as more overlap diagram contributions must be
calculated.

Many ultrashort optical pulses have heavy tails in the time
domain, and Ref. 33 showed experimental evidence that pulse over-
lap effects can extend for up to 100 fs when using 17 fs FWHM pulses
in 2DPE experiments. They attributed this effect to the significant
wings on the pulse envelopes, which is consistent with our analysis
of Lorentzian pulses.

V. CONCLUSION
We have presented the diagram generator (DG), a tool for auto-

matically generating the Feynman diagrams that contribute to per-
turbative nonlinear optical spectroscopies. The DG automatically
determines when pulses overlap and only generates extra overlap
diagrams when required. This automated process allows users to get
the full advantage of including all causally allowed diagrams with a
low computational cost.

We have shown that including these overlap diagrams can
be important in correctly predicting or interpreting spectra when
pulses are not in the impulsive limit. Using EEI2D as an example, we
have shown significant errors when using only the time-ordered dia-
grams with pulses whose duration are similar to the dynamics of the
system. We have also shown that overlap diagrams can make signifi-
cant contributions to the signal for delay times that are large relative
to the pulse durations, when those pulses have heavy temporal tails,
as in the case of Lorentzian pulses.

The DG is one module of the larger ultrafast spectroscopy
suite. The other components in UFSS are described in Refs. 41 and
42. Taken together, the UFSS is a tool for automatically calculat-
ing arbitrary-order spectroscopic signals while accounting for the
effects of finite pulse shapes, which can be of arbitrary form. The
diagrams produced by the DG can also be used in other analyti-
cal or numerical tools. The DG can be used for determining all the
diagrams that contribute to any order spectra, whether in the impul-
sive limit or with finite pulses. The DG may open the door to more
easily calculating higher-order corrections to commonly used third-
order spectroscopies and may lend itself to developing intuition for
higher-order spectroscopic techniques.
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