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ABSTRACT

We present methods to calculate the electronic structure of wurtzite quantum dot systems with continuous alloy profiles within Fourier-
space-based k � p theory. We incorporate spatially varying elastic and dielectric constants in strain and piezoelectric potential calculations.
A method to incorporate smooth alloy profiles in all aspects of the calculations is presented. We demonstrate our methodology for the case
of a 1-dimensional InGaN quantum dot array and show the importance of including these spatially varying parameters in the modeling of
devices. We demonstrate that the convergence of the lowest bound state energies is for good approximation determined by the largest wave
vector used in constructing the states. We also present a novel approach of coupling strain into the k � p Hamiltonian, greatly reducing the
computational cost of generating the Hamiltonian.
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I. INTRODUCTION

Given their large range of bandgaps, from 0.78 to 3.51 eV,
InGaN materials have attracted attention in applications such as
LEDs, single-photon emitters, water splitting, and solar cells.1–5 For
any application, device performance depends on having an elec-
tronic structure well tuned to its target application. Since the elec-
tronic structure of quantum dots (QDs) can be dramatically
changed by varying their size and composition, they can be quite
attractive for applications. InGaN QD structures grown by molecu-
lar beam epitaxy (MBE) have significant In diffusion,1 leading to a
smoothly varying alloy profile without a sharp material interface.
This indium diffusion results in a material whose elastic and elec-
trical parameters vary with the local alloying fraction. Quantum
dots with intentionally graded indium fractions have also been of
interest.6 Given the electronic structure’s sensitivity to composition,
accurate alloy profiles are crucial for accurate modeling.

Tight binding (TB) and k � p theory are standard approaches
for calculating single-particle electronic structures for bulk materials

and nanostructures. Both approaches rely on elastic, dielectric, and
electronic parameters, which vary spatially in QD structures due to
the changing alloy content. Essentially, all methods calculate the
continuously varying local strain field and its impact on the elec-
tronic structure through deformation potential and piezoelectric
couplings. Frequently, calculations assume sharp material interfaces
and uniform alloy content in the dot and host regions; they addi-
tionally assume that the elastic and dielectric constants are spatially
uniform.7,8 Continuous spatial dependence of these material param-
eters is readily included in real-space methods, including both TB
and k � p. Strain, even with spatially varying elastic constants, can
be calculated using real-space finite element methods for continuum
elastic models7,9,10 and with valence force fields in atomistic
models.7,11,12 Smooth variation of the alloy fraction can also be
included.10 However, both TB and real-space k � p have important
limitations. Tight binding methods can be accurate but become
expensive when considering systems with a large number of
atoms,13 though linearly scaling methods extend their reach for an
increasing number of systems.14 The k � p method is not atomistic
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and gives a good balance between accuracy and computational
requirements for mid-to-large dots.15 Its real-space implementations
using the finite difference method9,10 can be successful, but they
can suffer from spurious midgap states arising from finite difference
formulae effectively sampling bulk states at large wave vectors where
k � p breaks down, especially at high alloy fractions.16,17

Fourier space approaches to k � p have been widely used
with good success in modeling the electronic structure of
QDs.8,18–24 They provide an excellent compromise between com-
putational cost and accuracy, allowing consideration of nanoscale
structures beyond the scale of TB. Fourier space k � p methods
give the direct control of wave-vector sampling, making it easy to
reject the spurious states.8,19

A hybrid approach using real-space parametrization and
fast-Fourier-transform-based strain and Hamiltonian calculations
allows rapid determination of band-edge energies in nanostruc-
tures, including piezoelectric potentials and smoothly varying alloy
profiles.6,23,24 Each eigenstate must be found independently,
making this approach particularly good when interested in the
lowest electron and hole states or in small dots that only contain a
few bound states. The traditional Fourier space approach, as taken
from Refs. 8 and 18–22, produces a non-sparse Hamiltonian,
which is diagonalized to obtain a full eigenvalue spectrum, making
it useful when interested in properties such as optical absorption.
References 18–22 reduced the computational cost of this approach
by using symmetry adapted bases that block diagonalize the
Hamiltonian.18,20,25 This latter Fourier space-based k � p method
has only been used with sharp material interfaces, spatially uniform
elastic and dielectric constants, and spatially uniform dot and host
alloy fractions. References 8, 25, and 26 used a continuum elastic
Green’s function method for calculating strain. These works
assumed spatially uniform elastic and dielectric constants for both
the host and dot materials, which was justified for the sizes of their
InAs/GaAs and GaN/AlN QD systems but would not be correct for
larger dots. Reference 8 presented a method to include different
host and dot material elastic constants but did not use it.

In isolated QDs, it is computationally challenging to calcu-
late strain effects since strain generally decays more slowly than
bound state wavefunctions. The unit cell must then be chosen
large enough to resolve the strain decay, increasing the number
of plane waves that must be calculated to resolve the electronic
structure, at considerable computational expense. References 20
and 27 presented a more efficient approach that uses two differ-
ent unit cells: one for the electronic structure and one for strain.
This method allows for the modeling of the electronic structure
and strain but introduces some complexity in calculating the
Hamiltonian, which requires the calculation of multiple com-
posed convolutions on different Fourier space meshes. These
convolutions can be computationally costly depending on the
sizes of meshes needed for convergence.

In this article, we show the methods for and the importance of
including two different sources of spatial variation in Fourier space
k � p calculations for wurtzite InGaN systems: first, spatially varying
elastic and dielectric constants and second, smooth alloy profiles, as
are found in experimental devices. Our approach efficiently includes
smooth alloy profiles in the strain, piezoelectric potential, and elec-
tronic structure calculations. Smooth indium profiles both increase

the accuracy of the simulations for simulating experimental devices
and decrease their computational cost by removing the abrupt inter-
faces that otherwise require large numbers of plane waves to obtain
convergence. The spatial variations of elastic and dielectric constants
affect the calculation of strain and piezoelectric potentials, and we
adapt the calculations presented in Ref. 8 to include the spatially
varying dielectric constant. We also present a method to improve
the efficiency of calculating the strain in using the two-unit-cell
method for isolated QDs. By fixing the strain unit cell to be com-
mensurate with the electronic unit cell, we present an approach that
reduces the number of needed convolutions, significantly reducing
the computational cost.

We demonstrate our methodology by calculating the electronic
structure for a 1D array of InGaN QDs, modeling devices grown as
LEDs and used for water splitting.1,3 In this example, we show the
importance of the inclusion of spatially varying elastic and dielectric
constants and smooth indium profiles for accurate electronic struc-
tures. We also show that the most important criterion for the conver-
gence of the lowest QD electron and hole energies is the maximum
wave vector included in the Fourier space sampling, which can be
increased with low computational cost by using a small unit cell.

Section II contains strain and piezoelectric potential calcula-
tions using spatially varying elastic and dielectric parameters.
Section III presents the k � p model used for electronic structure
calculations and our novel approach to efficiently include strain
through choices of unit cells. Section IV introduces a method to
use smooth indium profiles in all aspects of our calculations.
Section V demonstrates our entire methodology for the case of a
1D QD array, such as QDs grown inside the nanowires.1

II. SPATIALLY VARYING ELASTIC AND PIEZOELECTRIC
CONSTANTS

We begin by considering QD heterostructures with abrupt
changes in alloy fraction. Alloying the host material changes the
local lattice constants, leading to a lattice mismatch at the host and
dot material boundary. This lattice mismatch is a source of strain
throughout the QD system, affecting the electronic states of the
system. For example, InN has a larger lattice constant than GaN, so
alloying GaN with indium to form a QD produces strain in and
near the QD. The propagation of that strain is determined by the
elastic constant, which itself also varies with alloy fraction.
Additionally, strain can generate strong piezoelectric potentials in
materials such as III-nitrides. The piezoelectric potential in
III-nitrides is particularly important along the c-axis and can be
strong enough to spatially separate electron and hole states through
the quantum-confined Stark effect.28

In prior Fourier-space-based work, elastic and dielectric con-
stants are largely assumed to be spatially uniform in Fourier-based
calculations of strain and the piezoelectric potential. Reference 8
presented a method to include differing host and dot elastic con-
stants but did not use it in their calculations. They argued that the
system’s elastic constant largely depends on the nearest neighbor
lattice spacing, which is strongly modified inside small dots from
bulk values. They therefore used the spatially uniform elastic cons-
tant of the host material. In our case, we consider larger dots in
which the lattice constant in the center of the dots can be
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significantly different from that in the barrier material, which
implies that the local elastic constants should also be different from
those in the barrier material. Having the local elasticity depend on
local strain would make a computationally challenging nonlinear
problem. Instead, we implement the method presented in Ref. 8 to
include differing elastic constants using the bulk elastic constants
of alloys at each location. We compare those results to those
obtained from using spatially uniform elastic constants, to highlight
the differences in strain-induced dot energy levels. For the piezo-
electric potential, we use a procedure similar to Ref. 8, but we also
include spatially varying dielectric constants. The strain field and
the piezoelectric potential are coupled into a k � p model, as pre-
sented in Sec. III, for electronic structure calculations.

A. Quantum dot system

We consider a superlattice of wurtzite QDs embedded in a
bulk host material, as shown in Fig. 1(a). InGaN QDs such as those
described in Ref. 1 have a lens-like shape and do not have a sharply
defined boundary. We approximate these QDs as being either
cylindrical or hexagonal prisms. These choices of dot geometries
simplify calculations, as described in Sec. II B, and preserve the C6v

symmetry of the material, which we take advantage of in Sec. III
for electronic structure calculations. Hexagonal periodic boundary
conditions are used to also preserve the material’s C6v symmetry.
For single-dot calculations, the superlattice unit cell must be large
enough that the choice of cell size does not affect results. For actual
QD arrays, we consider only hexagonal superlattices in the plane.

In this periodic system, the real space QD superlattice is
defined by the set of lattice vectors Li, as shown in Fig. 1(a). We
denote the real space unit cell by Ωe, its volume by Ve, and the
reciprocal-space unit cell by Ω�1

e . The index “e” indicates that these
quantities relate to the electronic cell, as opposed to the strain unit
cell, which is introduced in Sec. II B. Imposing periodic conditions
in real space implies a discrete reciprocal space with wave vectors

q ¼ i1b1 þ i2b2 þ i3b3, i1, i2, i3 [ Z, (1)

where bi are the reciprocal basis vectors, similar to that in Ref. 25.
Due to the symmetry of the system, we have L1 ¼ L2, which we
define as L12. In our reciprocal-space calculations, we sample on
sets of the wave vectors q [ Ω�1

e . We define m12 and m3 such that
i1, i2 ¼ �m12, . . . , 0, . . . , m12f g and i3 ¼ �m3, . . . , 0, . . . , m3f g.
This sampling produces a hexagonal mesh of size N ¼ N1N2N3,
where Ni ¼ 2mi þ 1. To obtain a C6 symmetric mesh, we remove
points such that qxj j . m12

2π
L1
, leaving a mesh whose size we

denote by Ne.
By choosing the unit cell dimensions Li large enough, it is

possible to remove electronic coupling between neighboring dots.
This flexibility allows us to model 3D, 2D, and 1D arrays of
coupled dots. The isolated dot case can also be obtained by choos-
ing both L12 and L3 sufficiently large. Section II B presents a
method that also uncouples dots in terms of strain, which is based
on calculating strain and the electronic structure using different
unit cells.

We illustrate the methods presented in this article by modeling
a QD system inspired by Ref. 1. That system consists of InGaN dots
grown in GaN nanowires. We approximate this system as an infinite
1D QD array by choosing L3 to match the measured dot–dot spacing
and L12 large enough to avoid dot–dot coupling, but we do not con-
sider the nanowire itself and instead embed the dots in bulk GaN.
We choose the dot indium alloy fraction, radius, and height based on
the experimental device. System parameters are listed in Table I, and
material parameters are in Appendix A. In some instances, wurtzite
QD possesses a clear hexagonal geometry.29 Therefore, we consider
both cylindrical and hexagonal prism QDs, as shown in Fig. 1(b).
The hexagonal dots have dimensions chosen to give an area of πR2,
preserving the volume of the cylindrical dots. In all of the cases
studied, there is only a small difference between the circular and hex-
agonal dots, and we show the circular ones in most results. We illus-
trate the small differences in Sec. V. All results are for the cylindrical
case unless stated otherwise.

B. Strain

In this section, we present how we calculate strain with
elastic constants that depend on alloy fraction for 3D, 2D, and
1D QD superlattices and isolated dots. Our method follows from

FIG. 1. (a) Unit cell of the cylindrical QD superlattice and its basis vectors.
Dashed lines show the unit cell boundaries of the QD superlattice. White
regions are the host material and gray regions are the QDs. (b) Hexagonal
prism QD.

TABLE I. Default quantum dot superlattice parameters used unless specified
otherwise.

Parameter Value

X0 0.45
h 40 Å
R 200 Å
L12 500 Å
L3 70 Å
m12 10
m3 4
n12 6
n3 1
δ [1.5, 1.5, 2.5] Å
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Refs. 8 and 20. We calculate the strain produced by a single isolated
dot and construct the QD superlattice strain by linear superposition.

The calculated strain is to be coupled into the electronic struc-
ture calculations. However, strain decays considerably slower than
bound electronic wavefunctions. In the case of isolated dots, the
unit cell must be large enough to accommodate the strain decay.
Choosing a unit cell large enough to capture the strain decay
reduces the maximum wave vector attainable when using a fixed
number of plane waves. As we demonstrate in Sec. V, accurately
describing the electronic states requires using sufficiently large
wave vectors, and thus, a large unit cell requires a large number of
plane waves. Following Ref. 20, we consider that the electronic
model and strain model each have their own real space unit cells.
This additional degree of freedom allows accurate and computa-
tionally efficient determination of both electronic structure of
rapidly decaying confined QD states and longer-range strain effects
in isolated dots. In the case of a QD superlattice, different real-
space electronic and strain unit cells are not required.

In prior work, lattice-mismatch-driven strain has been cal-
culated for a single dot using a continuum theory with Green’s
function approach while assuming spatially uniform elastic con-
stants.8,26,30 We briefly present the method to include spatially
varying elastic constants from Appendix A of Ref. 8, correcting
typos in Eqs. (A7) and (A8). We show how the spatially varying
elastic constants modify strain and how this modified strain
changes the piezoelectric potential in Sec. II C. We show that the
elastic constant correction is necessary to obtain accurate strain
and piezoelectric potentials.

Reference 8 showed that in the case of differing host and dot
elastic constants, λhijmn and λdijmn, respectively, the strain tensor ϵij
can be written in Fourier space as

~ϵlm qð Þ ¼ ϵTlm~χd qð Þ þ ~ϵclm qð Þ, (2)

ϵTlm ¼ εaδ lm þ εcaδl3δm3,

where the first term in Eq. (2) is the initial strain due to lattice mis-
match and the second term is lattice relaxation due to elasticity.
Here, εa ¼ ah � ad

� �
=ad, εc ¼ ch � cd

� �
=cd, and εca ¼ εc � εa,

and the tildes indicate Fourier-space quantities as described in
Appendix B. ~χd is the Fourier transform of the characteristic func-
tion of the dot, which is given in Appendix C. ah and ch are the
lattice constants of the host material and ad and cd are of the dot
material. More specifically, a is the xy-plane lattice constant and
c is the lattice constant along the z-axis. ~ϵclm qð Þ is then written as a
power series

~ϵclm qð Þ ¼ ~ϵ 0ð Þ
lm qð Þ þ ~ϵ 1ð Þ

lm qð Þ þ ~ϵ 2ð Þ
lm qð Þ þ � � � , (3)

with ~ϵ Nð Þ
lm qð Þ/ Δλ

λ

� �N
, Δλijmn ¼ λhijmn � λdijmn, and the condition

Δλ
λ � 1 ensures the convergence of the series. The leading term ~ϵ 0ð Þ

lm
corresponds to uniform elastic constants of the dot with each sub-
sequent term being a correction to include spatial variations due to
the alloy profile. Using the Einstein summation convention, each

term has the form

~ϵ Nð Þ
lm qð Þ ¼ 2πð Þ3

2
F Nð Þ
p qð Þql ~Gh

mp qð Þ þ F Nð Þ
p qð Þqm~Gh

lp qð Þ
h i

, (4)

where

F 0ð Þ
i qð Þ ¼ �λdikprϵ

T
prqk~χd qð Þ, (5)

F Nð Þ
i qð Þ ¼ �Δλiklmqk

2πð Þ3
V

X
q0

~χd q� q
0

� �
~ϵ N�1ð Þ
lm q

0
� �

, (6)

where Eqs. (4) and (6) are corrected from Ref. 8 and ~G
h

in is Green’s
tensor for the host material.

We compare the strain corrected at various orders according
to Eq. (3) to the usually considered case of uniform elastic con-
stants of the host material. Figure 2 shows the convergence of the
strain corrections for the 1D QD array system described in Sec. II A.
We quantify convergence with the following metric for the norm of
the strain:

~ϵj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m5l

V

2πð Þ3
ð
dq3 ~ϵlm qð Þj j2

s
, (7)

where m 5 l indicates the sum of the unique elements of the strain
tensor (~ϵ11, ~ϵ22, ~ϵ33, ~ϵ23, ~ϵ13, and ~ϵ12). The green line in Fig. 2 com-
pares ~ϵ when calculated from Eq. (4) to ~ϵGaN, which is calculated
assuming spatially uniform elastic constants of GaN. Blue line shows
the self-convergence of the power series in Eq. (3). From these
results, we conclude that a second order correction is sufficient to
have strain converged within 1% in self-convergence and that this
converged strain differs from the uniform case by about 6%,

FIG. 2. Convergence of the strain due to spatially varying elastic constants with
perturbation order for a 1D QD array as described in Table I. Green line is the
relative difference between the corrected strain and the strain with uniform λ of
GaN. The zeroth term is the case of uniform λ of InGaN with alloy fraction of
the dot. Converged strain has 6% relative difference from the case of λGaN, indi-
cating that the corrections are necessary for accurate strain fields. Blue line is
the magnitude of each term in Eq. (3) as a fraction of the zeroth term.
Correction magnitudes are less than 1% starting from second order.
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indicating that the elastic constant corrections produce significant
changes in strain fields of InGaN systems. In Sec. II C, we show that
the calculated piezoelectric potential remains essentially unchanged
from third-order corrections and up, consistent with Fig. 2. Given
that including these corrections is not computationally costly, we
have included third-order corrections in all of our calculations unless
stated otherwise.

Figure 3 shows the hydrostatic strain, ϵhydro ¼ ϵxx þ ϵyy þ ϵzz ,
along a cut through the axis of the dot, showing relaxation of strain
inside the dot with each additional correction. For this sample dot,
the bulk lattice constants are 5% larger in the dot than in the
barrier, and the compressive strain near the center (ϵzz � �0:012,
ϵxx � �0:028) produces local lattice constants that are closer to the
bulk InGaN values than bulk GaN, which is consistent with the
choice to model spatially varying elastic constants.

The strain produced by the QD superlattice can be obtained
from the linear superposition of the single-dot strain. However, we
want the ability to study dots that are completely uncoupled, both
electronically and from strains of the fictitious periodic array.
References 20 and 27 proposed a method to allow the simultaneous
treatment of a large unit cell for the strain problem and a small unit
cell for the electronic problem, which together allow isolated dots to
be considered in a computationally tractable manner. In this case of
two independent cells, the strain is calculated in its own real space
unit cell Ωs with volume Vs. We denote the strain reciprocal unit
cell as Ω�1

s such that it contains the wave vectors Q, which are
defined similarly to Eq. (1) for the electronic cell. Given that strain
relaxes more slowly than bound electronic wavefunctions, we only
consider Vs � Ve. In this two-unit-cells approximation, the Fourier
transform of the strain produced by the QD array is

~ϵaij qð Þ ¼ 2πð Þ3
Vs

X
Q[Ω�1

s

~ϵij Qð Þ~χe q� Qð Þ

¼ 2πð Þ3
Vs

~ϵij * ~χe
� �

s
qð Þ, (8)

where χe is the characteristic function of the electronic unit cell Ωe

in Ωs, which is given for our case in Appendix C. Superscript “a”
indicates array. We follow the notation that q [ Ω�1

e and Q [ Ω�1
s .

~ϵij * ~χe
� �

s
qð Þ denotes a convolution where the subscript “s” indi-

cates that the convolution is over the wave vectors Q [ Ω�1
s ; see

Appendix B for Fourier transform and convolution definitions. We
show in Sec. III B that choosing the linear dimensions of Ωs to be
integer multiples of the linear dimensions of Ωe ensures that all
vectors q [ Ω�1

e are also in Ω�1
s . This choice allows Eq. (8) to be

evaluated efficiently.

C. Piezoelectric potential

III-nitride materials are strongly piezoelectric, having both spon-
taneous and strain-driven polarizations.31,32 The calculation of the
polarization from an electric field requires the knowledge of the static
dielectric constant ε of the material. In prior work, Fourier space-
based approaches have assumed a uniform dielectric constant. Given
the large difference in ε between GaN and InN (9.8 and 13.8, respec-
tively), spatial variation can be significant in InGaN QD systems. We
present a method to obtain the Fourier transform of the scalar poten-
tial ~w qð Þ assuming ε rð Þ changes with the local alloy fraction. We find
that correcting for the spatial dependence of the dielectric function
leads to important changes in the piezoelectric potential and show in
Sec. V that this change significantly shifts the lowest QD energy
levels. We do not consider metallic screening, which can be impor-
tant in highly doped materials.33–35

Generally, we can write the displacement field D rð Þ as

D rð Þ ¼ ε0E rð Þ þ Ptot rð Þ,
where E rð Þ is the electric field, ε0 is the vacuum permittivity, and
Ptot is the total polarization. In the strained material, there are
three sources of polarization: bound charge, strain, and spontane-
ous polarization,

Ptot rð Þ ¼ Pbnd rð Þ þ Pst rð Þ þ Psp rð Þ:
Here, we assume no free charge screening. Assuming Pbnd to be
linear with the electric field and incorporated into ε rð Þ as usual,

D rð Þ ¼ ε rð ÞE rð Þ þ Pst rð Þ þ Psp rð Þ, (9)

where Pst rð Þ þ Psp rð Þ ¼ P rð Þ is the residual polarization after
electric-field-induced bound charge has been included in ε rð Þ.

We take ε rð Þ to be εh in the host material and εd in the dot
material, so

ε rð Þ ¼ εh þ εd � εh
� �

χd rð Þ: (10)

We obtain εd by a linear interpolation of the binary compounds’
bulk dielectric constants. Taking the divergence of Eq. (9), using
∇ �D ¼ 0, taking the Fourier transform and solving for the electric
field gives

Em rð Þ ¼ � 1
ε rð Þ F

�1 qn
qm

~Pn qð Þ
� �

, (11)

FIG. 3. Hydrostatic strain for increasing correction orders in the elastic constants.
Black dashed line is strain assuming uniform elastic constants of the host mate-
rial λGaN while solid lines are for spatially varying elastic constants with correc-
tion order λ Nð Þ. As the correction order λ Nð Þ increases, the strain moves toward
the uniform case λGaN. Note that the lines for λ 2ð Þ and λ 3ð Þ are overlapping.
However, the uniform case λGaN underestimates the strain in the dot.
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where F�1 represents the inverse Fourier transform. Using
Em ¼ �@mw, where @m ; @

@xm
and w rð Þ is the scalar potential,

~w qð Þ ¼ � i
qm

F
1

ε rð Þ F
�1 q0n

q0m
~Pn q0ð Þ

� �
rð Þ

� �
: (12)

For the case of sharp alloy interfaces, χd rð Þ is either 1 or 0, and
Eq. (10) gives

1
ε rð Þ ¼

1
εh

þ 1
εd

� 1
εh

	 

χd rð Þ: (13)

We treat the case of smoothly varying alloy fraction in Sec. IV.
Putting this result in Eq. (12) gives

~w qð Þ ¼ ~wh qð Þ þ Δ~w qð Þ (14)

with

~wh qð Þ ¼ � i
qm

1
εh

qn
qm

~Pn qð Þ, (15)

Δ~w ¼ �i
qm

1
εd

� 1
εh

	 

F χdF

�1 q0n
q0m

~Pn q0ð Þ
� �� �

: (16)

Here, ~wh is the contribution to w with εr rð Þ ¼ εh, and Δ~w is the
change in ~w due to the dot material having a different dielectric
constant. See Ref. 25 for both spontaneous and strain-induced
polarization fields ~Pn qð Þ for the wurtzite crystal structure.

We now show the piezoelectric potentials that result from this
formulation for our model system in Sec. II A. Figure 4(a) shows
w zð Þ along the central axis of the QD calculated with constant ε of
the dot and host and with Eq. (14). As expected, the calculation
with spatially varying ε rð Þ agrees with wd

uni inside the dot and also
agrees with wh

uni outside the dot, with a transition near the boun-
dary that is captured by neither of the uniform cases.

Figure 3 showed how spatially varying elastic constants change
strain profiles. Figure 4(b) shows how those strain corrections
change w. The peak correction of 8 mV is significant if looking to
converge the energy levels within a few meV.

III. COMMENSURATE UNIT CELLS FOR EFFICIENT
COUPLING OF STRAIN IN k ⋅p

Here, we briefly present the QD k � p model we use for elec-
tronic structure calculations. This QD Hamiltonian is written in a
symmetry adapted basis, which reduces the computational cost for
calculating and diagonalizing the Hamiltonian. In this symmetry
adapted basis, we show how the strain produced by the QDs con-
tributes to the Hamiltonian. We also introduce strain effects using
a larger unit cell than the electronic cell defined in Fig. 1. In this
section, our goal is to show our method of efficiently including
strain in the QD k � p model, which we do by choosing the strain
unit cell’s dimensions to be integer multiples of the unit cell used
for the electronic structure calculations. The k � p model and sym-
metry adapted basis are standard, and we briefly describe them and
refer to the sources for full descriptions.

We use the 8-band k � p model for bulk wurtzite material pre-
sented in Ref. 10 in the basis of Γ-point Bloch functions, which
includes spin–orbit coupling, crystal field splitting, and strain.
Since choosing angular momentum Ĵz eigenfunctions aids in the
construction of a symmetry adapted basis, we rotate the 8-band
Hamiltonian into the Ĵz eigenbasis, similar to Ref. 36. See
Appendix A for details. Recent work has alternatively obtained
k � p parameters directly in the symmetry adapted basis using ab
initio calculations.37

A. Quantum dot k ⋅p

We construct the QD Hamiltonian by giving the bulk
Hamiltonian a spatial dependence. The solution is expanded using
slowly varying envelope functions.8,18–20 The envelope functions
are periodic with the superlattice and can be expanded in the
Fourier domain using the superlattice reciprocal wave vectors q
defined in Eq. (1). Writing the envelope functions in terms of
plane waves leads to a non-sparse Hamiltonian.8,19 Due to the

FIG. 4. (a) Piezoelectric potential w zð Þ along the central axis, beginning in the
center of the dot. Blue and red dashed lines show w calculated with uniform
ε rð Þ ¼ εh and ε rð Þ ¼ εd, respectively. Black line shows the case with spatially
varying ε rð Þ. Note that w is antisymmetric in z. These results show that the
case of uniform ε cannot accurately describe w throughout the system. Strain
calculations include third-order corrections for the nonuniform elastic constants.
(b) Potential difference for various elastic constant corrections. Difference is with
respect to wh rð Þ, which is calculated with uniform λ rð Þ ¼ λGaN. The zeroth
order case (blue line) shows λ rð Þ ¼ λd. Includes a spatially varying dielectric
constant. System parameters are given in Table I. Both calculations implement
an alloy smoothing of δ ¼ [1:5, 1:5, 2:5] Å, which is described in Sec. IV.
Vertical dashed lines indicate the nominal material interface without smoothing.
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broken translation symmetry, we apply the substitution k j ! �i @
@x j

and symmetrize the operations to preserve Hermiticity.18,19,38 For
computational efficiency, we use a symmetry adapted basis, which
takes advantage of the C6 symmetry of the wurtzite crystal structure
by block diagonalizing the Hamiltonian. Symmetry adapted bases
have been fully described for both zincblende and wurtzite
systems.18,25 The symmetry-adapted basis reduces the Fourier space
sampling to a single sextant 0 � qy � tan 2π

6

� �
qx of the full space

and block diagonalizes the Hamiltonian into six blocks, which are
labeled by mf ¼ �5=2, �3=2, �1=2, 1=2, 3=2, 5=2f g. The label mf

can be interpreted as a total quasi angular momentum.20,25 The
basis elements are

jmf , α, qi ¼ Λ mf , α, q, r
� �juαi, (17)

where

Λ mf , α, q, r
� � ¼ 1ffiffiffi

6
p
X5
l¼0

ei R
$

lq
� �

�r eilf mf�Jz αð Þ½ � (18)

when either qx or qy is nonzero and Λ mf , α, q, r
� � ¼ eiq�r when

qx ¼ qy ¼ 0 and Jz(α) ¼ mf . R
$
l is the lf rotation around the z-axis

with f ¼ 2π=6. This basis consists of the basis functions of the irre-
ducible representations of the double group �C6. This block diagonal-
ization greatly reduces the computational cost to diagonalize the
Hamiltonian. Equation (18) distinguishes wave vectors that are
purely along the z-axis from those that have an xy-component,
which we denote by qz and q, respectively. These two cases differ
because a z-axis rotation leaves qz invariant while sending q to a

new wave vector R
$
lq. The case of jmf , α, qzi with Jz αð Þ = mf does

not exist in the basis set. In this basis, the eigenvalue problem is

X8
α¼1

X
q

Hmf α0α q0, qð ÞAα
imf

qð Þ ¼ EiA
α0
imf

q0ð Þ, (19)

where

Hmf α0α q0, qð Þ ; hmf , α
0, q0jĤjmf , α, qi

¼ 1
Ve

ð
Ve

d3rΛ* rð ÞHα0αΛ rð Þ, (20)

where we have dropped some arguments in Λ for brevity. Hα0α are
the bulk Hamiltonian matrix elements presented in Appendix A.
Expressions for Hmf α0α q0, qð Þ are fully written out in Appendix D
in terms of the bulk Hamiltonian matrix elements and QD charac-
teristic function.

B. Strain and piezoelectric coupling

Deformation potentials and piezoelectric effects, which are
both strain-driven, are important for accurate calculations of the
electronic structure in III-N materials. However, including defor-
mation potentials can be computationally costly for the case of iso-
lated dots. The two-unit cell approach presented in Sec. II B allows

for the study of isolated dots but at the cost of computationally
expensive convolutions. Additionally, another layer of convolutions
appears in the Hamiltonian matrix elements, leading to composed
convolutions. Here, we present the matrix elements due to strain
and show our computationally efficient approach of dealing with
these composed convolutions by choosing the linear dimensions of
the real-space strain cell Ωs to be integer multiples of those of the
electronic cell Ωe.

The bulk strain Hamiltonian matrix elements in Eqs. (A2)
and (A4) can be written as

Hα0α ¼
X
ij

f ijα0αϵij rð Þ,

where f ijα0α consist of k � p parameters (ai, li, mi, and ni). Using the
prescription of Sec. III A and defining

S
ll0mf

α0 ,α ; eif l mf�Jz αð Þ½ ��l0 mf�Jz α0ð Þ½ �f g,

S
l0mf

α0 ; e�il0f mf�Jz α0ð Þ½ �,

the strain contributions to the QD Hamiltonian are

Hij,st
mf α0α q0, qð Þ ¼ 1

6

X5
l,l0¼0

S
ll0mf

α0 ,α h
ij,st
α0α R

$
l0q

0, R
$
lq

� �
,

Hij,st
mf α0α q0, qzð Þ ¼ 1ffiffiffi

6
p
X5
l0¼0

S
l0mf

α0 hij,stα0α R
$
l0q

0, qz
� �

,

Hij,st
mf α0α q0z , qz

� � ¼ hij,stα0α q0z , qz
� �

,

where

hij,stα0α q0, qð Þ ¼ 2πð Þ3f ij,hα0α
Ve

~ϵaij q
0 � qð Þ

þ
2πð Þ6 f ij,dα0α � f ij,hα0α

� �
V2
e

~χd * ~ϵ
a
ij

� �
e
q0 � qð Þ:

(21)

Here, f ij,hα0α and f ij,dα0α are the k � p parameters for bulk host and dot
materials, respectively. ~ϵaij is the strain produced by the QD array

calculated in Sec. II B. The subscript “e” in ~χd * ~ϵ
a
ij

� �
e
indicates

that the convolution is over the wave vectors q [ Ω�1
e . Inserting

the superlattice strain from Eq. (8) into the k � p strain matrix ele-
ments from Eq. (21) leads to composed convolutions,

~χd *~ϵ
a
ij

� �
e
qð Þ ¼

X
q0[Ω�1

e

~χd q0ð Þ~ϵaij q� q0ð Þ

¼ 2πð Þ3
Vs

X
q0[Ω�1

e

~χd q0ð Þ
X

Q[Ω�1
s

~ϵij Qð Þ~χe q� q0 �Qð Þ,
(22)

which can be computationally demanding depending on the
number of wave vectors used. The original proposal of using a
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large strain cell with a smaller electronic cell imposed no relation-
ship between their sizes.20,27 Equation (22) then requires evaluating
~χe at points q� q0 � Q that are contained on neither the electronic
nor strain meshes, requiring a unique convolution be calculated for
every q0 [ Ω�1

e . It is well known that using the convolution
theorem to compute a convolution between two vectors of length
N has a computational cost that scales as N log Nð Þ. Similarly, the
computational cost for a convolution on a 3D N 	 N 	 N mesh
scales as N3 log Nð Þ. Computing the composed convolutions in
Eq. (22) would then scale as N3

e log Neð ÞN3
s log Nsð Þ since a convolu-

tion in Q has to be calculated for each q0. Note that the convolu-
tions in Eq. (22) are linear convolutions, which implies that the
arrays of function values must be padded with zeros before using
the convolution theorem, as detailed in Appendix B. This zero
padding increases both Ne and Ns. We show that choosing a strain
unit cell to be a supercell of the electronic unit cell reduces the
required number of convolutions, leading to an improved scaling of
N3
e log Neð Þ þ N3

s log Nsð Þ.
Choosing the strain unit cell linear dimensions to be multiples

of the electronic cell, we have

Lsi ¼ niL
e
i , i ¼ 12 and 3, (23)

where ni take positive integer values. This choice of real-space unit
cells leads to the electronic Fourier space mesh being contained in the
strain mesh Ω�1

e , Ω�1
s . The wave vectors Q then have a spacing that

is a fraction of the spacing of the electronic wave vectors q,

ΔQi ¼ Δqi
ni

: (24)

See Fig. 5 for an example of commensurate meshes and their overlap-
ping Fourier-space meshes. Note that from Eq. (22), ~ϵaij is then only
sampled at points Δq ¼ q� q0, which belong to the electronic mesh.
Our procedure starts with using the convolution theorem (see
Appendix B) to efficiently calculate the inner convolution
~ϵij * ~χe
� �

s
Qð Þ on the strain mesh to obtain ~ϵaij Qð Þ. Since the wave

vectors Q also contain the wave vectors q, we can then extract the
points that lie on the electronic mesh to obtain ~ϵaij qð Þ. Lastly, we
perform the second convolution ~χd * ~ϵ

a
ij

� �
e
qð Þ, again using the con-

volution theorem. This workflow is shown in Fig. 6. This method
computes only two 3D convolutions and so has a complexity scaling
of N3

e log Neð Þ þ N3
s log Nsð Þ, which is a considerable improvement

compared to the non-commensurate case. Note that Ns is generally
much larger than Ne to obtain appropriate convergence, so the com-
putational cost is dominated by the convolutions on Ω�1

s .
The piezoelectric potential brings no additional complexity,

and the workflow for calculating the piezoelectric potential is
shown in Fig. 6. The potential is initially calculated on the strain
mesh, and the electronic mesh portion is extracted to calculate the
piezoelectric potential contributions to the Hamiltonian, which are
written out in Appendix D.

IV. SMOOTH ALLOY PROFILE

When InGaN devices are grown by MBE, indium diffuses
between layers.1 While most studies of MBE-grown materials simulate

abrupt junctions, this diffusion leads to smoothing of the mate-
rial interfaces, producing a continuously varying alloy fraction,
which changes the local band properties and lattice constant,
which in turn change strain and polarization fields. This
smooth alloy profile must be included for accurate modeling.
The smooth indium profiles produced by diffusion differ from
the random alloy fluctuations studied in Ref. 7 using atomistic
modeling. Reference 12 has used random fluctuations at mate-
rial interfaces to study quantum well width fluctuations, which
is similar to the profiles produced by indium diffusion. In this
section, we present a method to include alloy diffusion effects in
Fourier-space calculations by effectively smoothing the charac-
teristic function of the dot. Smooth indium profiles also provide
a computational benefit, since sharp features of the confining
potentials are removed, so fewer wave vectors are required to
attain convergence. We use this method to produce an alloy
profile that models indium diffusion and to address how spa-
tially varying material parameters can be included within the
piezoelectric potential and electronic structure calculations. Our
examples focus on indium alloying, but the methods are general
for all k � p calculations of alloy structures. Reference 39 pre-
sents a similar procedure for strain calculations only, with a lin-
early graded alloy profile.

FIG. 5. Example of commensurate Fourier space meshes where n12 ¼ 2,
leading to ΔQi ¼ Δqi

2 , which implies the vectors Q contain all the vectors q.

FIG. 6. Workflows for calculating strain ~ϵa and piezoelectric potential ~f
a
on the

electronic mesh of an array of dots, beginning from the strain of a single dot on
the strain mesh. Upper path shows the composed convolutions of the form in
Eq. (22), which are necessary to compute the matrix elements in Eq. (21).
Lower branch shows steps for calculating ~f

a
, which is used in Eqs. (D1), (D2),

and (D3). e-mesh and s-mesh signify the Fourier space electronic and strain
meshes, respectively.
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A. Smoothing method

In the case of a sharp material interface, the local alloy frac-
tion X rð Þ can be defined by the characteristic function of the dot

X rð Þ ¼ X0χd rð Þ,

where the characteristic function χd rð Þ defines the geometry of the
dot with indium fraction X0. By convolving with a Gaussian

G r, δð Þ ¼ 1

2πð Þ32δxδyδz
e
�1

2
x2

δ2x
þy2

δ2y
þz2

δ2z

� �
or other kernel, we can obtain a

smooth version of the characteristic function

Xsm rð Þ ¼ X0χd *Gð Þ rð Þ
¼ X0χsm rð Þ,

where δ ¼ δx , δy , δz
� �

controls the radius of smoothing and needs
to be chosen to model the desired alloy diffusion. G r, δð Þ is nor-
malized to preserve the total amount of alloying element, and
χsm rð Þ is a smoothed characteristic function. Using the convolution
theorem, the smoothed characteristic function satisfies

~χsm qð Þ ¼ ~χd qð Þe�
δ2xq

2
xþδ2y q

2
yþδ2z q

2
zð Þ

2 :

Note that χsm rð Þ is no longer strictly a characteristic function, as it
takes values continuously between 0 and 1. We now show that it
can be inserted in the place of the characteristic function in the
previous sections to give k � p parameters, strain, and piezoelectric
fields accurately with a smooth alloy profile.

B. Material parameters

We focus on the case of InGaN to illustrate the interpolation
of material parameters. In the case of sharp material interfaces, the
host and dot regions each consist of a uniform material. The host
material is a binary material and has well-defined parameters. The
dot region consists of alloyed InGaN, and its parameters are
obtained by either linear or bowed interpolation of bulk GaN and
InN parameters, which are listed in Appendix A.

In the case of a smooth alloy profile, the dot and host
regions are no longer uniform, giving the material parameters a
smooth spatial dependence. Parameters that were linearly inter-
polated in the sharp interface case can still be obtained from a
simple linear interpolation based on the local alloy fraction
X rð Þ. The bandgap Eg is nonlinear in the alloy fraction due to a
bowing factor. This nonlinearity prevents us from using the
convolution theorem in calculating the Hamiltonian matrix ele-
ments. However, we show that neglecting the bowing parame-
ters in the alloy-smoothing region can still give computationally
efficient and accurate smoothed profiles when the alloy fraction
is not too large.

The local value for any of the linearly interpolated material
parameters depends on the local alloy fraction

f rð Þ ¼ f BX rð Þ þ 1� X rð Þ½ �f A, (25)

where f can be a parameter such as lattice constant, and subscripts
A and B stand for the two binary materials, GaN and InN, for
example. For this case of linearly interpolated quantities, smoothed
parameters can be written as follows:

f rð Þ ¼ f dχsm rð Þ þ 1� χsm rð Þ½ �f A, (26)

where f d is the linearly interpolated material parameter at the
nominal alloy fraction X0 of the QD.

Bandgaps do not vary linearly with alloy fraction and are gen-
erally well described with a bowing term, as

Eg(r) ¼ EB
g X rð Þ þ 1� X rð Þ½ �EA

g � X rð Þ 1� X rð Þ½ �C,

where C is a bowing constant. More complicated forms allow the
bowing factor to depend on alloy fractions,40 but we do not con-
sider such effects. Following the same procedure as in Eq. (26), a
smoothed version can be written as follows:

Eg rð Þ ¼ EA
g þ EB

g � EA
g

h i
EA
gX0χsm rð Þ

� CX0χsm rð Þ 1� X0χsm rð Þ½ �, (27)

where the first two terms are the linear interpolation and the last
term is the bowing. This bowing term brings additional complexity
when performing k � p calculations due to the nonlinearity in
χsm rð Þ. Dealing with this nonlinearity is trivial for the case of
sharp material interfaces since χ2 ¼ χ, which is not true for χsm.
The bandgap appears in the Hamiltonian through the diagonal
element E0

c in Eq. (A3). In the plane wave basis, the contributions
of the nonlinear term CX2

0χ
2
sm are

hnonlinearEg q0, qð Þ ¼ CX2
0
1
V

ð
V
d3r e�iq0 �rχ2sm rð Þeiq�r

¼ CX2
0
2πð Þ6
V2

χsm * χsmð Þ q0 � qð Þ:

Additional convolutions must then be calculated to include the
bowing of the bandgap, increasing the computational cost.
However, we show that we can, to good approximation, use a
bandgap that is linearly interpolated between the host and dot
bandgaps,

Eg rð Þ � Ed
g χsm rð Þ þ 1� χsm rð Þ½ �Eh

g : (28)

Here, Ed
g is the bulk bandgap at an alloy fraction of X0, and Eh

g is
the bulk bandgap of the host material. This linear interpolation
gives a good approximation for the bandgap for most regions, as
shown in Fig. 7, and overestimates Eg near the interfaces.
Disagreements increase with dot indium fraction. The regions
with largest deviation are in the same locations where Eg changes
over 1.5 eV; so we expect the slight shift of position where each
bandgap occurs to have a minimal effect. We can estimate from
Fig. 7 that the shift in the effective height of the dot in the
z-direction is smaller than δz=2, so a particle-in-a-box model
allows the fractional change in the most confined energy level to
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be estimated to be approximately δz=h � 6%. The neglection of
the χ2sm term allows the theory to stay linear and therefore effi-
ciently calculated with the convolution theorem. If the smoothing
radius becomes comparable to the dot dimensions, this approxi-
mation may need to be reconsidered.

C. Strain and the piezoelectric potential

Here, we show how smoothing is included in the strain and
piezoelectric potential calculations. Once calculated, those strains
and piezoelectric potentials can be included in the k � p model
exactly as shown in Sec. III B.

Following the derivations from Refs. 8 and 26, it is not
obvious how smoothing is to be implemented in strain calculations
since they begin from the stress of the sharp interface dot/barrier
interface. However, Ref. 30 presents an alternative derivation for
the same strain calculation indicating that χ rð Þ in the strain expres-
sions can be exchanged for the smoothed version χsm rð Þ without
any further changes, which is the approach taken by Ref. 39.

For the piezoelectric potential, Eq. (13) for the spatially
varying inverse dielectric constant assumed sharp interfaces. In the
case of a smooth indium profile, we use Eq. (25) to write

ε rð Þ ¼ εBX rð Þ þ 1� X rð Þ½ �εA: (29)

In the scenario where X rð Þ is spatially varying, Eq. (13) can
no longer be applied, because the inverse of the dielectric constant
is not a linear function of indium. However, similar to the
bandgap, we find that

1
ε rð Þ �

1
εd

χsm rð Þ þ 1� χsm rð Þ½ � 1
εA

(30)

still gives an accurate representation of ε�1 rð Þ. Figure 8 shows in
our test case a disagreement of less than 1 percent between the
inverse dielectric from Eq. (29) and the linear interpolation in
Eq. (30). The form of Eq. (30) allows us to use Eqs. (14)–(16)
for the piezoelectric potential with a simple substitution of χ rð Þ
by χsm rð Þ.

V. IMPACTS OF CORRECTIONS

In this section, we apply our methodology to study the case of
a 1D array of QDs, inspired by those in Ref. 1. Unlike those experi-
mental dot arrays embedded in nanowires, ours is an infinite 1D
chain embedded in bulk GaN. We achieve this 1D array by taking
n3 ¼ 1 to fully couple the dots in the z-direction and choose L12
and n12 sufficiently large to avoid both electronic and strain effects
from neighboring dots in the xy-plane. In the experimental dot
arrays, strain can be significantly modified by the nanowire walls,
but the strength of the piezoelectric field along the wire axis, which

FIG. 7. (a) Bandgap in a QD system obtained by bowed interpolation using
Eq. (27) along the z and x axes through the center of the dot. Bandgap
obtained from linear interpolation using Eq. (28) is visually indistinguishable.
(b) Difference in the bowed and linearly interpolated bandgaps along the z and
x axes. QD parameters are listed in Table I. For computational simplicity and
smooth curves, these results were obtained using a rectangular real-space unit
cell with dimensions Lx ¼ Ly ¼ 500 Å, Lz ¼ 70 Å and a smoothing of
δ ¼ [3, 3, 5] Å.

FIG. 8. (a) Inverse dielectric constant from Eq. (29) along the z and x axes
through the center of the dot. Linearly interpolated inverse from Eq. (30) is visu-
ally indistinguishable. (b) Relative difference of the linear and nonlinear interpo-
lations. QD parameters are listed in Table I. Results used the same rectangular
mesh and smoothing as in Fig. 7.
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plays the most important role in modifying the band structure
from a strain-free calculation, is significant in both cases.5

We investigate the convergence of the lowest electron and
hole state energies Ec and Ev, which define the fundamental gap
of the dot E0 ; Ec � Ev. More specifically, we show that the
largest wave vector sampled plays a dominant role in convergence
and that the choice of hexagonal or circular dot cross sections is
not significant for dots that maintain the same volume. We also
show the energy shifts experienced by these two states when using
uniform or spatially varying material parameters and when
including alloy smoothing.

We model an infinite 1D QD array with parameters listed in
Table I. The 1D dot array has an experimentally well-characterized
dot–dot spacing in z, which fixes Le3 ¼ Ls3 ¼ L3, leaving L12 and n12
to be fixed. These QDs have a rather large radius, so the smallest
spatial feature that we need to resolve is the decay of the bound
wavefunctions into the classically forbidden region. Given that
bound wavefunctions decay faster than strain, we need wave vectors
that are relatively large to be able to resolve the wavefunctions.

Increasing m12 increases the maximum wave vector contained in
the mesh, but we can also sample at larger wave vectors by using a
smaller Le12. However, if the electronic cell is chosen too small, then
there can be electronic wavefunction overlap between states of
neighboring dots. We must then choose Le12 as small as possible
while also avoiding dot–dot interactions. As for strain, in order to
study a 1D array, we must choose n12 sufficiently large to have
Ls12 ¼ n12Le12 large enough that the strain of the QD superlattice
does not extend across neighboring strain unit cells in the xy-plane.

With this intuition, we turn to the convergence of E0 in
terms of m12, Le12, and n12. Figure 9(a) shows the importance of
the largest q in the electronic mesh, qmax

12 , for the convergence of
E0. In this study, Le12 and n12 are chosen to keep a constant
Ls12 ¼ Le12n12 ¼ 2000 Å. We observe that E0 is to good approxima-
tion a function of only qmax

12 and not of m12 and Le12, converging
toward the same value for all choices of Le12. We also observe that
the smallest Le12 with highest m12 gives the most converged E0,
since qmax

12 ¼ m12π=Le12. The black line in Fig. 9(a) represents the
case of dots touching in the xy plane and, interestingly, does not
break the convergence trend. However, we do find a break in the
convergence trend for smaller dots in Fig. 9(b). This difference
occurs because smaller dots have wavefunctions that extend
further outside the dot region, which makes them more able to
tunnel to a neighboring dot. Consequently, care has to be taken
in choosing the unit cell dimensions for small QDs.

The lowest QD confined electron and hole energies, Ec and
Ev, have each been converged within 5 meV by choosing m12, m3,
and n12 sufficiently large, see Table I. Material parameters are listed
in Appendix A. Band edges and the lowest energy states are shown
in Fig. 10. The thick lines labeled CB and VB represent the bulk

FIG. 9. Convergence of the fundamental gap E0 for a 1D array of QDs vs the
maximum magnitude of q12 included in the k � p calculations. Le12 and n12 vary
while (a) has R ¼ 200 Å with strain box size held constant at Ls12 ¼ 10R and
(b) has R ¼ 40 Å with Ls12 ¼ 16R. Plane wave sampling m12 from 3 to 11 are
shown for each choice of Le12; the number next to each point indicates m12.
Different values of m12, Le12 that produce the same qmax

12 can be seen to
produce approximately the same E0, showing that qmax

12 is a useful metric for
convergence of these states. Since qmax

12 ¼ m12π=Le12 and computational cost
scales with m12, smaller Le12 allows easier access to large q

max
12 . In both panels,

the black curves have Le12 ¼ 2R, so the dots touch each other at the six edges
of the hexagonal unit cell. In the larger dot, there is no signature of dot–dot tun-
neling, while in the smaller dot, tunneling of the wavefunctions into neighboring
dots causes E0 to have a significant change, labeled Δ. For R ¼ 40 Å case, Ec
and Ev were found to be converged within 5 meV with m12 ¼ 7, m3 ¼ 4, and
n12 ¼ 4, smaller than those required for the larger dot, as reported in Table I.

FIG. 10. Electronic structure of a cylindrical (solid, black) and hexagonal prism
(dashed, red) QD superlattice system along the central axis of the dot for
δ ¼ [1:5, 1:5, 2:5] Å, corresponding to s ¼ 1 in Fig. 11(a). Other system
parameters are in Table I. The circular and hexagonal dots are not significantly
different for these band-edge states, with eigenenergies differing by less than
12 meV. Thick lines labeled CB and VB are the bulk band edges under the
influence of the piezoelectric field and the diagonal component of the deforma-
tion potential. Lowest bound electron and hole state energies, Ec and Ev, are
shown by horizontal lines. Thin lines labeled ψc and ψv are z-axis projections
of the probability distributions obtained from the envelope functions for these
states. Dashed vertical lines are the nominal material interfaces before smooth-
ing. These calculations include spatially varying elastic and dielectric constants.
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band edges modified by the piezoelectric potential and the diagonal
portion of the deformation potential; the valence band edge
includes a third of the trace of the 3	 3 valence band block from
Eq. (A4). Figure 10 shows the electronic structure of both circular
and hexagonal QDs. Convergence parameters were kept the same
for both sets of calculations, and the radii were chosen to maintain
the same volume. We conclude that the energies of the most con-
fined electron and hole states are insensitive to the dot geometry.

The modifications in both the strain and the piezoelectric
potential due to spatially varying elastic and dielectric constants
also have effects on the electronic structure. Table II shows how
much Ev and Ec shift due to corrections. We find that both correc-
tions push the states apart, leading to an energy gap 100 meV
larger than from simpler calculations with uniform ε and λ, a

significant change that shows the importance of accurate modeling
of dielectric and elastic parameters.

Figure 11(a) shows that indium diffusion pushes the lowest
electron and hole states apart, which is due to changes in the con-
fining potentials. From Fig. 11(b), we see that indium diffusion
reduces the depth of the confining potential. The valence band
shows similar behavior, leading to Ev being pushed down in
energy. Consequently, the gap E0 increases with indium diffusion.

In the case of sharp material interfaces, large wave vectors
are needed to resolve the discontinuous parameter profiles.
Smoothing removes the sharp interfaces, reducing the required
qmax
12 for the same degree of convergence. This reduction gives
convergence with smaller m12 and m3, and therefore, the reduced
computational cost is needed with increasing δ. In Figs. 11(a)
and 11(b), we converged for the case of s ¼ 1, guaranteeing con-
vergence for the rest of the sweep.

VI. CONCLUSIONS

We have demonstrated techniques for and results of four
modifications of standard Fourier space QD k � p theory. We have
presented a method to include smoothly varying alloy profiles in
Fourier-based strain, piezoelectric potential, and k � p calculations.
We have shown that the effects of spatially varying elastic and
dielectric parameters are non-negligible on the strain and piezo-
electric potential and also produce important shifts of the lowest
electron and hole states, significantly changing the calculated gap
of the QD. For the case of k � p theory for isolated dots, we have
presented a new method of overlapping electronic and strain
meshes to facilitate the coupling of strain into the k � p
Hamiltonian, greatly reducing the computational cost of calculat-
ing the Hamiltonian matrix elements. Lastly, we have shown that
the maximum wave vector contained in the electronic sampling
mesh is the most important criterion for determining the conver-
gence of QD levels.
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APPENDIX A: BULK k � p PARAMETERS

We use the following basis of Ĵz eigenfunctions:

ju1i ¼ jiS, "i ju5i ¼ j�iS, #i,
ju2i ¼ j� XþiYffiffi

2
p , "i ju6i ¼ jX�iYffiffi

2
p , #i,

ju3i ¼ jX�iYffiffi
2

p , "i ju7i ¼ j� XþiYffiffi
2

p , #i,
ju4i ¼ jZ, "i ju8i ¼ jZ, #i,

(A1)

where S, X, Y , and Z are Γ-point Bloch functions with arrows indi-
cating spin. The eigenvalues of the Ĵz eigenfunctions are as follows:

Jz ¼ 1
2
,
3
2
, � 1

2
,
1
2
, � 1

2
, � 3

2
,
1
2
, � 1

2

� �
:

TABLE II. Energy shifts due to spatially varying λ(r) and ε(r) relative to the case
with uniform constants of the host material λGaN and εGaN. Cylindrical dot with
parameters in Table I.

Energy shifts
(meV) λ(r) and εGaN λGaN and ε(r) λ(r) and ε(r)

ΔEc 16.7 46.7 64.7
ΔEv −5.1 −30.6 −37.4
ΔE0 21.7 77.4 102.1

FIG. 11. Effects of indium diffusion, given by δ ¼ s[1:5, 1:5, 2:5] Å, for (a) Ec
and Ev and (b) bulk conduction band edge. Remaining parameters are as listed
in Table I. Increase in indium diffusion leads to less confinement, which pushes
the two states apart in energy, widening the electronic gap E0. Electronic struc-
ture for s ¼ 1 is shown in Fig. 10.
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In the basis (A1), the bulk k � p Hamiltonian is

H ¼ g kð Þ γ
�γ* g* kð Þ
 �

, (A2)

where
g kð Þ ¼ g1 kð Þ þ g2 kð Þ þ gcr þ gso þ gst,

g1 kð Þ ¼

E0
c � P2ffiffi

2
p kþ P2ffiffi

2
p k� P1kz

� P2ffiffi
2

p k� E0
v 0 0

P2ffiffi
2

p kþ 0 E0
v 0

P1kz 0 0 E0
v

2
66664

3
77775, (A3)

g2 kð Þ ¼

A0
2 k2x þ k2y

� �
þ A0

1k
2
z 0 0 0

0 L01þM1

2

� �
k2x þ k2y

� �
þM2k2z � 1

2N
0
1k

2
� � 1ffiffi

2
p N 0

2k�kz

0 � 1
2N

0
1k

2
þ

L01þM1

2

� �
k2x þ k2y

� �
þM2k2z

1ffiffi
2

p N 0
2kþkz

0 � 1ffiffi
2

p N 0
2kþkz

1ffiffi
2

p N 0
2k�kz M3 k2x þ k2y

� �
þ L02k

2
z

2
66666664

3
77777775
,

gst ¼

a2 ϵxx þ ϵyy
� �þ a1ϵzz 0 0 0

0 1
2 l1 þm1ð Þ ϵxx þ ϵyy

� �þm2ϵzz � 1
2 l1 �m1ð Þ ϵxx � ϵyy

� �þ in1ϵxy � n2 ϵxz�iϵyzð Þffiffi
2

p

0 � 1
2 l1 �m1ð Þ ϵxx � ϵyy

� �� in1ϵxy 1
2 l1 þm1ð Þ ϵxx þ ϵyy

� �þm2ϵzz
n2 ϵxzþiϵyzð Þffiffi

2
p

0 � n2 ϵxzþiϵyzð Þffiffi
2

p n2 ϵxz�iϵyzð Þffiffi
2

p m3 ϵxx þ ϵyy
� �þ l2ϵzz

2
66666664

3
77777775
, (A4)

gcr ¼ Δcr

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

2
664

3
775,

gso ¼ Δso

3

0 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 0

2
664

3
775,

γ ¼
ffiffiffi
2

p
Δso

3

0 0 0 0
0 0 0 0
0 0 0 1
0 0 �1 0

2
664

3
775:

Here, Δcr and Δso are crystal field splitting and spin–orbit coupling,
respectively. The band edges are E0

c ¼ Ev þ Eg þ Δcr þ Δso

3 þ w and
E0
v ¼ Ev þ w, where w is any additional scalar potential such as the

piezoelectric potential. gst is the contribution to the Hamiltonian
due to strain ϵij. The k � p parameters A0

i are related to the Kane
parameters Pi as

A0
1 ¼

�h2

2mk
e

� P2
1

Eg
,

A0
2 ¼

�h2

2m?
e

� P2
2

Eg
,

where

P2
1 ¼

�h2

2m0

m0

mk
e

� 1

 !
3Eg Δso þ Eg
� �þ Δcr 2Δso þ 3Eg

� �
2Δso þ 3Eg

,

P2
2 ¼

�h2

2m0

m0

m?
e

� 1

	 

Eg 3Eg Δso þ Eg

� �� �þ Δcr 2Δso þ 3Eg
� �

ΔcrΔso þ 3ΔcrEg þ 2ΔsoEg þ E2
g

:

Here, mk
e and m?

e are the electron effective masses along the z-axis
and in the xy-plane, respectively. The Luttinger-like parameters L0i,
Mi, and N 0

i are related to the Ai parameters by

L01 ¼
�h2

2m0
A2 þ A4 þ A5ð Þ þ P22

Eg
,

L02 ¼
�h2

2m0
A1 þ P21

Eg
,

M1 ¼ �h2

2m0
A2 þ A4 � A5ð Þ,

M2 ¼ �h2

2m0
A1 þ A3ð Þ,

M3 ¼ �h2

2m0
A2,

N 0
1 ¼

�h2

2m0
2A5 þ P22

Eg
,

N 0
2 ¼

�h2

2m0

ffiffiffi
2

p
A6 þ P1P2

Eg
:
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Note that there is an error in the relations for L01, L
0
2, and N 0

1 in
Ref. 10, which we have corrected in agreement with Appendix B
of Ref. 41. The parameters Ai, Pi, and Eg used in our numerical
study of InGaN systems are given in Table III.

Similar to the k � p parameters L0i, Mi, and N 0
i , the strain

parameters are as follows:

l1 ¼ D2 þ D4 þ D5,

l2 ¼ D1,

m1 ¼ D2 þ D4 � D5,

m2 ¼ D1 þ D3,

m2 ¼ D1 þ D3,

m3 ¼ D2,

n1 ¼ 2D5,

n2 ¼
ffiffiffi
2

p
D6,

where the deformation potentials Di are listed in Table III.

APPENDIX B: FOURIER AND CONVOLUTION
CONVENTIONS

We define the Fourier forward and inverse transforms of a
function g rð Þ as

F g rð Þf g qð Þ ; ~g qð Þ ¼ 1

2πð Þ3
ð1
�1

d3r g rð Þe�iq�r,

F�1 ~g qð Þf g rð Þ ¼ g rð Þ ¼
ð1
�1

d3q ~g qð Þeiq�r:

A convolution is denoted by

f * gð Þ rð Þ ¼
ð1
�1

f r0ð Þg r� r0ð Þdr0:

The convolution theorem states that

~f * ~g
� �

qð Þ ¼ F f rð Þg rð Þf g qð Þ:

For a system that is periodic in real space with a unit cell Ω of
volume V , we define

~g qð Þ ¼ 1

2πð Þ3
ð
Ω
d3r g rð Þe�iq�r;

g rð Þ ¼ 2πð Þ3
V

X
q[Ω�1

~g qð Þeiq�r;

where Ω�1 is the reciprocal space to the unit cell Ω. Defining the
Fourier space convolution as

~f * ~g
� �

qð Þ ¼
X

q0[Ω�1

~f q0ð Þ~g q� q0ð Þ, (B1)

the convolution theorem is

~f * ~g
� �

qð Þ ¼ V

2πð Þ3 F f rð Þg rð Þf g qð Þ:

Since we consider different superlattice unit cells for the electronic

and strain properties, ~f * ~g
� �

e
indicates a convolution on the elec-

tronic space Ω�1
e and ~f * ~g

� �
s
on the strain space Ω�1

s .

The reciprocal space Ω�1 contains a discrete infinity of wave
vectors on which to evaluate ~f and ~g. The convolution in Eq. (B1)
then sums over the infinite set of wave vectors, with ~f and ~g being
functions that decay at large wave vectors. For the calculations in
this article, we choose a finite number of wave vectors. By choosing
this mesh to contain wave vectors sufficiently large to capture
the decay of ~f and ~g, we can calculate the linear convolution in

TABLE III. Material parameters used to model the InGaN system. Parameters were
taken from Ref. 10.

Parameters GaN InN

a (Å) 3.189 3.545
c (Å) 5.185 5.703
C11 (GPa) 390 223
C12 (GPa) 145 115
C13 (GPa) 106 92
C33 (GPa) 398 224
C44 (GPa) 105 48
e15 (C=m2) 0.326 0.264
e31 (C=m2) −0.527 −0.484
e33 (C=m2) 0.895 1.06
Psp (C=m2) −0.034 −0.042
εr 9.8 13.8
Eg (eV) 3.51 0.78
Ev (eV) 0 0.5
Δcr (eV) 0.010 0.040
Δso (eV) 0.017 0.005
mk=m0 0.20 0.07
m⊥/m0 0.20 0.07
A1 −7.21 −8.21
A2 −0.44 −0.68
A3 6.68 7.57
A4 −3.46 −5.23
A5 −3.40 −5.11
A6 −4.90 −5.96
a1 (eV) −4.9 −3.5
a2 (eV) −11.3 −3.5
D1 (eV) −3.7 −3.7
D2 (eV) 4.5 4.5
D3 (eV) 8.2 8.2
D4 (eV) −4.1 −4.1
D5 (eV) −4.0 −4.0
D6 (eV) −5.5 −5.5
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Eq. (B1) to good approximation by padding the ~f and ~g arrays with
zeros and performing a circular convolution, as defined below.

We denote the finite Fourier space mesh by qi1i2i3 with �mj

� i j , mj such that Nj ¼ 2mj þ 1 is the dimension of the mesh in
each direction. For convenience, we use the mapping
p j ¼ i j þmj þ 1, which runs from 1 to Nj. Evaluating a function ~f

on the mesh q p1p2p3 gives the array ~f p1p2p3 . The Fourier space array
~f p1p2p3 and its real-space counterpart fv1v2v3 are then related through
the discrete Fourier transform and its inverse,

~f p1p2p3 ¼ F ff g p1p2p3

¼ 1

2πð Þ3
XN1,N2,N3

v1,v2,v3¼1

fv1v2v3 e
�i2π p1v1=N1þp2v2=N2þp3v3=N3ð Þ, (B2)

fv1v2v3 ¼ F�1 ~f
n o

v1v2v3

¼ 2πð Þ3
N

XN1,N2,N3

p1,p2,p3¼1

~f p1p2p3e
i2π p1v1=N1þp2v2=N2þp3v3=N3ð Þ, (B3)

where N ¼ N1N2N3. The circular convolution is defined as

~f � ~g� �
p1p2p3

¼
XN1,N2,N3

p01,p
0
2,p

0
3¼1

~f p01p02p03~g p1�p01ð Þ, p2�p02ð Þ, p3�p03ð Þ;

where ~g p1þN1ð Þ, p2þN2ð Þ, p3þN3ð Þ ¼ ~g p1p2p3
. The convolution theorem is

then

~f � ~g� �
p1p2p3

¼ N

2πð Þ3 F fgf g p1p2p3
:

To perform a linear convolution, we pad the arrays with zeros,
which increases the dimensions of the mesh to Np

j ¼ 2Nj � 1 and

yields the padded array ~f
p

p1p2p3
containing Np ¼ Np

1N
p
2N

p
3 elements.

The linear convolution of the original functions is contained in the
circular convolution of the padded function

~f * ~g
� �

p1p2p3
¼ ~f

p� ~gp� �
p1p2p3

: (B4)

This result is independent of the basis used to generate the mesh
and is valid in the case of hexagonal meshes.

APPENDIX C: CHARACTERISTIC FUNCTIONS

The characteristic function of a single dot is unity inside the
dot and zero outside,

χd rð Þ ¼ 1, r [ Ωd,
0, otherwise,

�

where Ωd is the space inside the dot. For a cylindrical dot centered
on the origin with radius R and height h along the z-axis, the

Fourier transform of χd is

~χd qð Þ ¼ 1

2πð Þ3
4πR

q3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q sin
h
2
q3

	 

J1 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q� �
:

The characteristic function of the electronic cell, the hexagonal
prism shown in Fig. 1, is defined as

χe rð Þ ¼ 1, r [ Ωe,
0, otherwise,

�

and its Fourier transform is

~χe qð Þ ¼ 1

2πð Þ3 L3sinc q3
L3
2

	 


	 q1 cos
L12q1
2

� �þ q2 cos
L12q1
2

� �� q1 þ q2ð Þ cos L12
q1þq2

2

� �
ffiffiffi
3

p
q1q2 q1 þ q2ð Þ :

APPENDIX D: QD k � p HAMILTONIAN

For the QD superlattice system, the k � p Hamiltonian matrix
elements of Eq. (20) in the symmetry adapted basis are given in
terms of parameters f dα0α and f hα0α that make up the bulk k � p
Hamiltonian matrix elements Hα0α , as presented in Sec. III. We
take the convention where superscript “ 0ð Þ” indicates a bulk
Hamiltonian matrix element containing no wave vector, “ ið Þ” indi-
cates a single wave vector ki, and “ i, jð Þ” indicate two wave vectors
ki and k j. By defining f ¼ 2π

6 and

S
ll0mf

α0 ,α ¼ eif l mf�Jz αð Þ½ ��l0 mf�Jz α0ð Þ½ �f g,

S
l0mf

α0 ¼ e�il0f mf�Jz α0ð Þ½ �,
the QD Hamiltonian matrix elements are

H 0ð Þ
mf α0α q0, qð Þ ¼ 1

6

X5
l0¼0

X5
l¼0

S
ll0mf

α0 ,α hα0α R
$
l0q

0, R
$
lq

� �
,

H ið Þ
mf α0α q0, qð Þ ¼ 1

6

X5
l0¼0

X5
l¼0

S
ll0mf

α0 ,α

R
$
l0 q

0
� �

i
þ R

$
lq

� �
i

2
hα0α R

$
l0q

0, R
$

lq
� �

,

H i,jð Þ
mf α0α q0, qð Þ ¼ 1

6

X5
l0¼0

X5
l¼0

S
ll0mf

α0 ,α

R
$
lq

� �
j
R
$
l0 q

0
� �

i
þ R

$
lq

� �
i
R
$
l0 q

0
� �

j

2

	 hα0α R
$
l0q

0, R
$
lq

� �
,

H 0ð Þ
mf α0α q0, qzð Þ ¼ 1ffiffiffi

6
p
X5
l0¼0

S
l0mf

α0 hα0α R
$
l0q

0, qz
� �

,

H ið Þ
mf α0α q0, qzð Þ ¼ 1ffiffiffi

6
p
X5
l0¼0

S
l0mf

α0

R
$
l0 q

0
� �

i
þ qzð Þi

2
hα0α R

$
l0q

0, qz
� �

,
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H i,jð Þ
mf α0α q0, qzð Þ ¼ 1ffiffiffi

6
p
X5
l0¼0

S
l0mf

α0

qzð Þ j R
$
l0 q

0
� �

i
þ qzð Þi R

$
l0 q

0
� �

j

2

	 hα0α R
$
l0q

0, qz
� �

,

H 0ð Þ
mf α0α q0z , qz

� � ¼ hα0α q0z , qz
� �

,

H ið Þ
mf α0α q0z , qz

� � ¼ q0z
� �

iþ qzð Þi
2

hα0α q0z , qz
� �

,

H i,jð Þ
mf α0α q0z , qz

� � ¼ qzð Þ j q0z
� �

iþ qzð Þi q0z
� �

j

2
hα0α q0z , qz
� �

,

where

hα0α R
$
l0q

0, R
$
lq

� �
¼ f hα0αδ l,l0δq,q0 þ

2πð Þ3 f dα0α � f hα0α
� �
Ve

~χd R
$
l0q

0 �R
$
lq

� �
:

The contributions of the piezoelectric potential to the
Hamiltonian are

Hpz
mf α0α q0, qð Þ ¼� δα0 ,α

2πð Þ3ec
6Ve

X5
l0¼0

X5
l¼0

eif l�l0ð Þ mf�Jz αð Þ½ �

	 ~wa R
$
l0q

0 �R
$
lq

� �
, (D1)

Hpz
mf α0α q0, qzð Þ ¼�δα0 ,α

2πð Þ3ec
Ve

ffiffiffi
6

p
X5
l0¼0

e�il0f mf�Jz α0ð Þ½ �~wa R
$
l0q

0 �qz
� �

,

(D2)

Hpz
mf α0α q0z , qz

� �¼�δα0 ,α
2πð Þ3ec
Ve

~wa q0z �qz
� �

, (D3)

where ~wa is described in Secs. II C and III B and ec is the elec-
tric charge.
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