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Abstract

The bulk photovoltaic effect (BPVE) leads to directed photo-currents and photo-voltages in bulk

materials. Unlike photo-voltages in p-n junction solar cells that are limited by carrier recombination

to values below the bandgap energy of the absorbing material, the BPVE photo-voltages have been

shown to greatly exceed the bandgap energy. Therefore the BPVE is not subject to the Shockley-

Queisser limit for sunlight to electricity conversion in single junction solar cells and experimental

claims of efficiencies beyond this limit have been made. Here, we show that BPVE energy conversion

efficiencies are, in practice, orders of magnitude below the Shockley-Queisser limit of single junction

solar cells and are subject to different, more stringent limits. The name BPVE stands for two

different fundamental effects, the shift current and the injection current. We discuss how energy

conservation alone fundamentally limits all of these to a bandgap-dependent value that exceeds the

Shockley Queisser limit only for very small bandgaps. Yet, small bandgap materials have a large

number of intrinsic carriers, leading to high conductivity which suppresses the photo-voltage. We

discuss further how slightly more stringent fundamental limits for injection and ballistic currents

may be derived from the trade-off between high resistivity, needed for a high voltage, and long

ballistic transport length, needed for a high current. We also explain how erroneous experimental

and theoretical claims of high efficiency have arisen. Finally, we calculate the energy conversion

efficiency for an example 2D material that has been suggested as candidate material for high

efficiency BPVE based solar cells and show that the efficiency is very similar to the efficiency

of known 3D materials. While the BPVE is an intriguing effect, it fundamentally remains an

inefficient way to convert light into electrical energy.
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I. INTRODUCTION

One can generally distinguish between two different effects that can give rise to photo-

voltages upon illumination, the barrier layer photovoltaic effect and the bulk photovoltaic

effect (BPVE) [1]. In the barrier layer photovoltaic effect, the voltage is a consequence of

a quasi-Fermi level separation between electrons in the conduction and holes in the valence

band that develops upon illumination. A current flows due to a broken spatial symmetry in

conductivity of electrons and holes [2], often achieved by p-n junctions. This barrier layer

effect forms the basis of all current commercial photovoltaic solar energy harvesting devices.

The quasi-Fermi level separation increases the product of the carrier concentrations in

conduction and valence band leading to enhanced radiative recombination [3]. This unavoid-

able recombination limits the open circuit voltage to a value below the optical bandgap of

the absorber material leading to the Shockley Queisser efficiency limit [4] for single junction

solar cells. Existing technology has already very closely approached this single junction limit

of 33.7% for AM1.5G illumination [5]. Further major improvements, reaching far above 40%

energy conversion efficiency, are being made by elaborate layering of several junctions of

materials with decreasing bandgap into a series-connected device [6].

The photo-voltage in the BPVE has a fundamentally different origin than the voltage in

the barrier layer effect. It is either due to an instantaneous shift in the charge distribution

upon absorption of light, the so-called shift current [7] stemming from the interband Berry

connections [8] or due to an injection of a carrier distribution that is asymmetric in momen-

tum space and gets transported ballistically [9]. In practice, both contributions are often

present simultaneously [10]. As a consequence of this microscopic current, a voltage builds

up in the resistive material that is inversely proportional to the conductivity and propor-

tional to the photo-current. In the shift current as well as the injection current case, the

BPVE can be described as a second order nonlinear effect [11] quantified by the nonlinear

conductivity tensor σijk for the interaction of positive and negative frequencies to generate

a zero-frequency current density

J i = σijk(0;ω,−ω)EjEk . (1)

The second order nonlinear response vanishes for centro-symmetric materials, so that the

BPVE requires the breaking of inversion symmetry.
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It has been established that the photo-voltage that can be reached with the BPVE is

higher than the band gap of the material [12, 13]. This is clear evidence that the Shockley-

Queisser limit for solar energy conversion based on the barrier layer effect does not apply

to the BPVE. Many researchers have taken this to mean that the BPVE can lead to more

efficient photovoltaic devices [14, 15]. A controversial experimental claim of high efficiency

has been made [16] which has received criticism for its normalization procedure [17]. How-

ever, a calculation of an alternative energy conversion limit, whether for monochromatic or

broadband illumination, is lacking.

Here we derive a simple formula for the energy conversion efficiency of the BPVE that

is independent of device structure. Using the example of ballistic currents, we are going

to explain how energy conversion efficiency limits may arise from this formula. We then

investigate recent claims of high energy conversion efficiency and explain why they are

flawed. Finally, we estimate the conversion efficiency for a monolayer of GeSe and show that

caution has to be used when interpreting average 3D values of 2D susceptibilities.

II. THE CONVERSION EFFICIENCY FROM MATERIAL PARAMETERS

The energy conversion efficiency of a photovoltaic device is conventionally defined by the

ratio between the electrical power, i.e. the product of the current I and the voltage V at

the maximum power point of the current-voltage characteristic (J-V curve), and the total

power IAi contained in the incoming light field, i.e.,

ηPV =
IV

IAi

, (2)

with the light intensity I and the illuminated area Ai. Maximum power and efficiency are

found by maximising the I V product across a I-V curve. The BPVE can have different

device geometries according to the direction of the photo-generated current, which may

depend on the alignment of the material with the incoming light field. Here, we assume

a device in which the electrical contacts are placed on either side of an illuminated area

and the relevant current density flows orthogonal to the Poynting vector of the incoming

light (see Figure 1). A geometry in which the Poynting vector and the current density are

parallel to each other is also possible but an important, but sometimes neglected, subtlety

of the efficiency calculation is lost in that geometry. Namely, in the orthogonal geometry
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FIG. 1. An illustration of the current in a device made of a bulk semiconductor and two electrodes

at the sides of the device. The average shift of the charges (electrons and holes) per absorption

event of the incoming light (green arrows) is denoted as R. This shift may occur due to ballistic

transport or due to the shift vector.

of Figure 1 the illuminated area Ai = d ∗ w with the distance between contacts d and the

width of the contacts w is not the same as the area through which the current flows, given

by Ac = w ∗ t, with the thickness t of the active material.

The total short circuit current for polarized monochromatic light of frequency ω can

be written as a function of the average charge displacement upon absorption of a photon,

denoted as R, which corresponds to the average over the shift vector in the shift current

case and the directed average over the ballistic transport distance in the injection current

case

Isc = qAi
R

d
aφ . (3)

Here, the product of absorptivity a, photon flux φ and illumination area Ai describe the

number of photons absorbed per unit time and it requires d/R absorption events to move

one unit of charge q from one contact to the other. This is in sharp contrast to barrier

layer photovoltaics in which one absorbed photon leads to one electron-hole pair reaching

the contacts. To map the short circuit current to tabulated material parameters [18], we

can rewrite the expression for the short circuit current in terms of the Glass coefficient G,

with G = Isc/(Iw), given by

G =
qR

~ω
, (4)

resulting in

Isc = Ai
G~ω

d
aφ = Ai

G

d
aI . (5)

Note that both G and R are tensorial quantities, depending on polarization direction and
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FIG. 2. (a) Circuit diagram of a BPVE cell showing the current source and parallel resistors

representing the dark conductivity, proportional to the intrinsic carrier density, and the photocon-

ductivity, proportional to the photo-excited carrier density. (b) A resulting linear I-V curve with

short circuit current, open circuit voltage and the maximal extractable electrical power, illustrating

the fill factor of 25%.

direction of current measurement, but for the purpose of deriving limits we are only interested

in their largest components.

In a good p-n junction solar cell, where the photovoltage represents a quasi-Fermi level

separation in the absorber material, the I-V curve is the I-V curve of a diode, shifted by

the light induced current. In the BPVE, the photovoltage at open circuit is given by the

balance of the shift current due to the light field and a drift current due to the static electric

field generated by the voltage. This can be represented by the simple circuit diagram in

Figure 2, which omits contact resistance [19], as we are interested in ideal limits. The open

circuit voltage, Voc, is therefore inversely proportional to the conductivity σ of the absorber

material and also to the distance between contacts d, in stark contrast to the voltage in a

p-n junction

Voc =
Jscd

σ
=

Iscd

σAc
, (6)

where Jsc is the short circuit current density. The I-V curve is linear, as expected from the

equivalent circuit diagram (Figure 2). The conductivity of the absorber material consists

of an intrinsic component due to the carriers that are present in the dark, i.e. intrinsic

carriers and carriers due to doping, and a photo-induced component due to the carriers

generated through absorption of light. Because a large open circuit voltage relies on a very

small conductivity, only semiconductors with a small intrinsic carrier density are suitable

candidates for energy conversion applications.

In most practical demonstrations in the visible and near UV regime, the photo-conductivity
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dominates over the intrinsic conductivity. A comparison of the slopes of dark I-V and light

I-V in the data shown in Figure 2 of [12] shows this clearly. Neglecting the intrinsic conduc-

tivity constitutes a zero-Temperature limit. When considering solar energy conversion at

room temperature, the intrinsic conductivity cannot generally be neglected. As we show be-

low, the intrinsic conductivity tends to dominate over the photo-conductivity in the infrared

regime at room temperature. It is only at absolute zero that the intrinsic conductivity may

vanish for all bandgaps.

This intrinsic conductivity at finite temperatures introduces a temperature dependence

into the efficiency limit. Note that a temperature dependence is necessary for any efficiency

limit to ensure adherence to the second law of thermodynamics. In principle, radiative

recombination also introduces a temperature dependence and its proper inclusion ensures

that no currents occur in thermodynamic equilibrium [10] but we neglect this contribution

as it is small at the bandgaps and device temperatures we consider. In efficient BPVE

devices, non-radiative recombination has to be much faster than radiative recombination for

the photo-excited carrier density to remain small.

As illustrated in Figure 2, the maximum power point of the linear I-V curve of the BPVE

device is at half the open circuit voltage and half the short circuit current, resulting in

PBPV E = VmppImpp =
VocIsc
4

. (7)

which lets us write the efficiency at the maximum power point of the I-V curve as

ηtot =
VocIsc
4IAi

≈ I2scd

4IσphAiAc
=

G2a2IAi

4σphdAc
=

q2R2a2IAi

4d~2ω2σphAc
. (8)

The photo-conductivity can be partially calculated from the band structure, a calcula-

tion to which we will return later, but here, we first make a few simple assumptions. The

first assumption is that the carriers in the conduction and valence band respectively are dis-

tributed according to a Fermi Dirac distribution at room temperature, which results from the

reasonable assumption that carrier recombination is slower than carrier-phonon scattering.

Additionally, we make the parabolic approximation, which is usually a good approximation

for carriers close to the band edge of a semiconductor. The photo-conductivity σph can then

be written as

σph = q(µen+ µhp) = q2τsc

(

n

me
+

p

mh

)

=
q2τscφaτrec

mr
, (9)
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where τsc = (τ−1
rec + τ−1

c−ph + τ−1
c−defect)

−1 is the inelastic scattering lifetime and τrec is the

recombination lifetime of the photo-generated carriers. We assume here that the carrier

mobility for electrons and holes respectively is given by µe/h = τscq/me/h, so that the con-

ductivity depends on the reduced mass of the semiconductor mr = (m−1
e + m−1

h )−1, taken

in the direction perpendicular to the contacts.

Inserting this result for the photoconductivity into the efficiency formula (8) leaves us

with

ηtot =
mrR

2aIAit

4d~2ω2τscτrecφAc

=
mrR

2a

4τrecτsc~ω
, (10)

where the absorptivity a of the active material in the device is included, a quantity that

depends on the details of the device structure as well as material properties. We can also

look at the efficiency per absorbed light power, which is arguably also a meaningful measure

since non-absorbed light could still be converted by another device. We then get an efficiency

that is independent of the thickness of the absorber material

ηnorm =
mrR

2

4τrecτsc~ω
=

mrG
2
~ω

4q2τrecτsc
. (11)

Note that this corresponds to the formula arrived at in [20], apart from the important factor

of 4 in the denominator which stems from the fill factor of a linear I-V curve.

Most importantly, the efficiency is proportional to the square of the average displace-

ment R of absorbed carriers. For the shift current, this corresponds to the average shift

vector while it corresponds to a vectorial average over the ballistic transport distance for

the injection current.

III. THE ZERO-CONDUCTIVITY OR ULTIMATE LIMIT

There is no known bound on the magnitude of the average shift vector R [21], so that

equation (11) may lead us to conclude that either the efficiency is unbounded, which would

violate the second law of thermodynamics, or that there must be an as yet unspecified

bound on the magnitude of the shift vector. Consider, however, that, in calculating the

shift vector from the bandstructure of the material, there is an implicit assumption that the

shift vector - derived from electronic wavefunctions - is not influenced by the static electric

field across the device. In Figure 3 we illustrate why the shift vector (and also the ballistic

transport distance of the injection current) must, for large static electric fields, depend on
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FIG. 3. Illustrating the maximum shift vector that is possible at a given voltage, if energy conser-

vation is to be fulfilled in the absorption process.

the magnitude of the electric field across the device. The maximum shift of charge Rmax

that a photon of energy ~ω can affect in a material with bandgap Eg against a static electric

field is given by energy conservation as

Rmax =
~ω −Eg

qEstatic
. (12)

Figure 3 thus illustrates that there is an energy conservation limit that is independent of

the conductivity of the material and it is given simply by

ηultimate =
~ω − Eg

~ω
. (13)

In other words, the BPVE can only convert the above-bandgap portion of the absorbed

photon energy into electrical work, performed by shifting the charge against the static electric

field. This is in stark contrast to the barrier layer photovoltaic effect, which can only convert

the below bandgap portion of the absorbed photon energy into work.

This limit assumes that the shift vector/ballistic transport vector points in the same

direction for each electron-hole pair generated by light absorption. In the case of the injection

current this would require a bandstructure in which all transport of photo-excited carriers

is unidirectional. Yet, the directional average of the group velocity over all states in the

bandstructure at a particular energy E vanishes because E(k) = E(−k) must be fulfilled

in a time-reversal symmetric material. Therefore, such an ideal condition for large injection

currents appears impossible and estimates of the asymmetry parameter range from 10−1

to 10−3 [10]. Given the idealisations involved, it is unlikely that the ultimate limit can be
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approached. In Section VI we discuss the state of the art of energy conversion efficiency and

misconceptions that have arisen. In the next Section we discuss how another, lower limit

can be derived for a BPVE originating from the injection current, i.e., from the asymmetric

carrier excitation with subsequent ballistic transport.

IV. BALLISTIC/INJECTION CURRENT LIMIT

Let us consider equation (11) if the average displacement R is due to ballistic transport of

photo-excited carriers with an asymmetric momentum distribution. For this we introduce a

coefficient ζ that quantifies this asymmetry and is given by ζ = 0 for a perfectly symmetric

initial momentum distribution and ζ = 1 for a unidirectional initial momentum distribution.

Using the parabolic band approximation, as we did for the derivation of the photo-

conductivity, the group velocity of charge separation of the electron and hole excited by a

photon of frequency ω is given by

vg =

√

2(~ω − Eg)

mr
, (14)

with the reduced mass mr in the direction perpendicular to the contacts. The ballistic

transport length is

l0 = vgτsc , (15)

resulting in

R(ω) = l0(ω)ζ(ω) = τsc

√

2(~ω − Eg)

mr

ζ(ω) . (16)

Inserting this expression into equation (11) gives a simple expression for the energy con-

version efficiency of absorbed monochromatic light

ηballistic(ω) =
1

2
ζ2

τsc
τrec

~ω −Eg

~ω
. (17)

Since τsc ≤ τrec, this means that maximally half of the kinetic energy of the excited carriers

can be converted to electric power in the ballistic effect. Significantly, and as for the ultimate

limit, none of the photon energy used to overcome the band gap of the material is converted

to electrical power. The monochromatic energy conversion efficiency of the BPVE is thus

significantly lower than the monochromatic energy conversion efficiency for an optimised p-n

junction, which can theoretically approach unity for high light intensity [22].
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Note that we can calculate the I-V curve for ideal asymmetry and in the absence of

scattering other than carrier recombination (τsc = τrec) also for non-parabolic dispersions

(the calculation procedure is described in Appendix A). A pure third order dispersion of

the form Ekin(k) = a|k|3 would then result in a slightly higher monochromatic conversion

efficiency of the kinetic energy of the carriers of 56.44% compared to 50% for a parabolic

dispersion, while a Dirac dispersion (Ekin(k) = a|k|) would result in a lower value of 37.3%.

In the following we consider only the parabolic dispersion.

For broadband excitation, the short circuit current is obtained through a frequency inte-

gral

Ibbsc =

∫

∞

0

dω
qτsc
d

√

2(~ω − Eg)

mr
Aia(ω)φ(ω)ζ(ω) . (18)

We describe the photon flux of unconcentrated sunlight through

φ(ω) =
f

h2c2
(~ω)2

e
~ω

kTSun − 1
+

(1− f)

h2c2
(~ω)2

e
~ω

kTenv − 1
, (19)

where TSun = 6000K, the temperature of the environment is set to Tenv = 300K, and

f = 1/46260 describes the fraction of the sky taken up by the Sun. The open circuit voltage

is again calculated from equation (6) where the conductivity σ is given by

σ = q2τscnmr . (20)

The carrier density is given by the sum of intrinsic carrier density ni and photo-generated

carrier density

nph = τrec

∫

∞

0

dωφ(ω)a(ω) . (21)

Using equation (7) and dividing the result by the incoming energy flux density from the Sun

Ė =
f

h2c2

∫

∞

0

dω
(~ω)3

e
~ω

kTSun − 1
, (22)

we can derive a broadband zero-temperature limit by making the ideal but highly unrealistic

assumption that τsc = τrec and that ζ = 1, and by assuming a vanishing intrinsic carrier

density. The result is shown in Figure 4 where we divide up the source of the different

losses compared to an ideal 100% conversion efficiency, inspired by the same plot for a single

junction solar cell in [23]. Interestingly, the BPVE uses none of the energy that is converted

by the conventional single junction solar cell, as that is the below bandgap portion of the

photon energy. It uses some of the kinetic energy of the electrons instead, which is lost to
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FIG. 4. Zero temperature broadband limit of solar energy conversion with the injection current.

The area labelled PV0K , Epot → Q describes the power that an ideal single junction photovoltaic

device operated at 0K could produce (in a mechanical analogy it could be seen as the potential

energy of the carriers in the conduction band). The area labelled transparency loss describes the

loss through photons that are not absorbed by the cell. The area labelled Ekin → Q describes

the part of the kinetic energy of the photo-excited carriers that cannot be converted to electrical

power, while the area labelled Ekin → Pel describes the electrical power that would be extracted

by an ideal bulk photovoltaic with perfect excitation asymmetry.

thermalization in a single junction solar cell. Since the maximum power voltage is different

for different frequencies the maximum power voltage of a broadband device is a compromise

between the different frequencies. Therefore slightly less than half of the average kinetic

energy of the photo-excited carriers can be converted to electrical energy, even if τsc = τrec,

compared to half of the kinetic energy in the monochromatic case.

V. ROOM TEMPERATURE SOLAR EFFICIENCY LIMIT

At room temperature, we need to also consider the dark conductivity of the material.

To estimate its impact we can use some heuristic rules for the density of states of common

semiconductors that give an order of magnitude estimate of the intrinsic carrier density

at room temperature. For materials with a bandgap in the blue region of the spectrum,

the intrinsic carrier density is negligible compared to the photo-generated carrier density at

solar intensities, therefore the dark conductivity is much smaller than the photo-conductivity.
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FIG. 5. Room temperature limit for solar energy conversion assuming that the asymmetry of

injected carriers is perfect (ζ = 1) and assuming different effective electron masses me at the

bandedge. The hole effective mass is set to mh = 1.

This is, however, not necessarily true for materials with bandgaps in the infrared regime.

In Figure 5 we now consider the dark conductivity at 300K that arises from the intrinsic

carrier density

ni =
√

NcNve
−Eg

2kT , (23)

that we calculate for different electron effective masses, assuming mh = 1, using the effective

density of states Nc,v

Nc,v = 2

(

2πme,hm0kBT

h2

)3/2

. (24)

The intrinsic carrier number depends on the thickness of the material, as does the absorp-

tivity. To connect absorptivity and intrinsic carrier density we use the approximate relation

between bandgap and optical matrix element derived from the Thomas-Reiche-Kuhn sum

rule [24]

p2cv =
m0Eg

2
(m0/me − 1) . (25)

The absorption coefficient of the material is given by

α(ω) =
π2q2

nrcǫ0m
2
0ω

|pcv|2NJ(~ω − Eg) , (26)

with the joint density of states as function of kinetic energy εk

NJ(εk) =
1

2π2

(

2mr

~2

)3/2√
εk . (27)

We choose the refractive index as nr = 3.5 and a thickness of the device of t = 2µm.
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The efficiency is independent of the intrinsic carrier density for large bandgaps but re-

mains small overall because of the large transparency losses, as well as the small kinetic

energy of the carriers. The addition of the dark conductivity starts to suppress the achiev-

able efficiency at a bandgap of around 1eV. This is due to a collapse of the photo-voltage

because of the decreased resistance across the device. The exact photon energy at which the

collapse occurs depends on the value of the effective mass that we choose and would also

change slightly if we chose a different refractive index. However, the dependence on both of

these factors is not strong because the dependence of the dark conductivity on the bandgap

is exponential compared to the geometrical dependence on the reduced effective mass and

refractive index (see equation (23)). We can clearly see that, even for the most optimistic

and unrealistic assumptions, the energy conversion efficiency of the BPVE is much smaller

than the Shockley Queisser limit.

VI. EFFICIENCIES OF EXISTING MATERIALS

Our results for the energy conversion efficiency limits of the BPVE contradict several

claims of high energy conversion efficiency that have been made in the last decade. In the

following we explain for each of the claims why we believe that they are erroneous.

Let us start by noting that it was a long established consensus that the BPVE is an

inefficient means of energy conversion. Equation (11) for the absorbed light contains a

factor of ballistic transport (scattering) time over recombination time. In [25], Fridkin gives

an estimate for the typical ratio of τsc/τrec ≈ 10−4−10−6, limiting the BPVE to even smaller

values as can be seen by inserting this ratio into equation (17) for the ballistic efficiency

limit.

However, a later experimental claim of an efficiency of 0.6% [20] was made by Fridkin

and co-authors. In that work, a 20nm and a 50nm BaTiO3 film are illuminated with

monochromatic light at a frequency of 3.4eV and the current flowing through Pt electrodes

located above and below the film is measured, an arrangement corresponding to Figure 1(b).

The product of measured short circuit current densities Jsc and open circuit voltage Voc is

then normalised to the estimated absorbed light intensity to obtain an efficiency. Thereby,

the authors omitted the fill-factor of the J-V curve, the inclusion of which decreases the actual

efficiency by a factor of 4. The authors also seem to have underestimated the absorption
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coefficient of the material, given in their work as α = 5 × 102/cm, by a factor of at least

3 but possibly by a much larger factor, as can be seen by comparison to [26, 27]. Also,

because of the nanoscale thickness of the device which introduces optical resonances, it is

not appropriate to calculate the absorption in the active material by simply multiplying

the absorption coefficient with the thickness, an approach only valid for bulk materials.

Taking all this into account it is plausible that the measured efficiency is actually below

10−5, consistent with the earlier predictions by Fridkin [25].

[16] used a nanoscale tip to also measure the BPVE in BaTiO3 and claimed an extraordi-

nary efficiency under AM1.5G illumination of 4.8%, which surpasses the Shockley Queisser

limit for the same (3.2eV) bandgap. The authors of [16] divided the power obtained from

the I-V curve of their nanoscale tip not by the total light power impinging on the device,

as is the standard definition of power conversion efficiency, but rather assumed a ballistic

collection area of the tip and calculated the relevant light power using this area. This implic-

itly assumes that a tightly focused spot of light around the nanotip would have produced

the same current and voltage, which has not been shown by the authors. Therefore [17]

rightly pointed out that the normalisation procedure is inadmissible and the actual power

conversion efficiency of the device investigated in [16] was 1.2× 10−8.

Recently, various 2D materials have been put forward as potentials materials for energy

conversion using the shift current mechanism [15]. Advocates for 2D materials point out that

the 2D photoresponsivity can be converted to a remarkably high 3D value if the responsivity

is divided by the thickness of the material. However as we established with equation (11),

the relevant parameter for high conversion efficiency is the average shift vector. The average

shift vector for a particular frequency and polarisation can be calculated from

Rabb = κabb~ω/a . (28)

where κabb is the photoresponsivity (for details of the calculation see the Appendix B) of

the material leading to a current in direction a from a light polarised in direction b, i.e,

Ia = κabbI(b) and a is the absorptivity of the material for this particular polarisation.

Figures 6(a) and (d) show those photoresponsivities for GeSe and a semi-Dirac material

with otherwise similar properties that has been designed for maximum photoresponsivity

(see Appendix for details on the model Hamiltonian). We show the 2D photoresponsivity,

which retains an additional unit of nm compared to the photoresponsivity for a 3D material,
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FIG. 6. Frequeny dependent (a) photoresponsivity, (b) average shift vector and (c) absorptivity of

2D GeSe. Frequency dependent (d) photoresponsivity, (e) average shift vector and (c) absorptivity

of a 2D semi-Dirac material.

because the current density is a density across a line of material, not along an area.

As can be seen in Figure 6(b) and (e), the average shift vector in GeSe and related

materials is within the usual range for bulk materials, on the order of a nanometer. There

are a few interesting observations to be made here. Firstly, while the susceptibility is much

larger for x-polarized than for y-polarized light, this is exclusively due to the differences in

absorptivity (see Figure 6(c) and (f)) for the two linear polarizations. In fact, the shift vector

is larger for y-polarized light despite the susceptibility being much larger for x-polarized

light. Therefore, the total power obtained from a single layer of GeSe is larger when it is

illuminated by x-polarized light but the conversion efficiency of absorbed light is larger for y-
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polarized light. Therefore, the total power obtained from a large number of 2D GeSe layers

may be higher for y-polarized light. This underlines that the second order susceptibility

itself is not a reliable indicator of energy conversion efficiency.

To convert the shift vector into an energy conversion efficiency ηabs using equation (11) we

need to make assumptions about the scattering and recombination lifetimes in the semicon-

ductor. The smaller the recombination lifetime and the smaller the scattering lifetime, the

larger the efficiency returned by (11). Using optimistically low values for the recombination

lifetime of 1ps and the scattering lifetime of 10fs, a photon energy of 2eV, and the effective

mass in x-direction of 0.643m0 resulting from the tight binding Hamiltonian in [15] we arrive

at a monochromatic conversion efficiency for absorbed light of ηGeSe
abs = 4.5× 10−5 for a shift

vector of 1nm in 2D GeSe. The semi-Dirac material shows a much higher photoresponsivity

which, however, does not correspond to a much higher shift vector at a peak of 1.4nm. The

efficiency ηSDabs = 3.05 × 10−5 calculated from equation (11) is actually lower than for GeSe

because its effective mass in x-direction is smaller at mSD
eff,x = 0.219m0 (see Appendix).

Those efficiencies are four orders of magnitude too low to compete with p-n junction

photovoltaics on energy conversion applications.

Finally, another recent work found a very high Glass coefficient for TaAs [28], which has a

bandgap in the mid-infrared region. Noting that the energy conversion efficiency for a given

Glass coefficient is proportional to the excitation frequency at which this Glass coefficient

is obtained, it is clear that this may not necessarily translate into higher energy conversion

efficiency. More importantly, as we have shown in Figure 5, the intrinsic conductivity cannot

be neglected in the mid-infrared regime, and large voltages may be impossible to obtain.

Having clarified that the operating efficiencies for BPVE devices to date are low, we

can still use equation (11) to consider what needs to be achieved to obtain higher energy

conversion efficiencies. For the shift current we need a material with a high average shift

vector that has a very low conductivity.

The injection current relies on a high asymmetry factor ζ . Fast scattering times increase

the resistance and thereby the voltage but also decrease the ballistic travel distance and

therefore the short circuit current, negating the advantage. Ultimately, however, it seems

that energy conversion is not the right application for this fascinating effect. As mentioned

above, this was already recognised a few decades ago [25] and recent experimental and

theoretical results have not changed this picture.
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VII. CONCLUSION

Above bandgap photovoltages in non-centrosymmetric materials, arising from second

order nonlinearities have raised hopes for a novel means to surpass the Shockley Queisser

limit for solar energy conversion. We show that, while the BPVE is not subject to the

Shockley Queisser limit, its conversion mechanism has more stringent limitations, even with

the most generous assumptions. In particular, by employing the most generous bounds

possible, we showed that the solar energy conversion efficiency for the BPVE is bounded by

slightly less than half of the kinetic energy portion of the absorbed photons, i.e. the photon

energy that is larger than the energy needed to excite electrons from valence to conduction

band. In that sense, the BPVE constitutes a counterpart to the barrier layer device in that

it uses only the part of the photon energy that the barrier layer device cannot use. Note

that this does not mean that the two effects can be easily combined in the same device

as the BPVE requires very low conductivity and high nonradiative recombination rates to

achieve appreciable voltages whereas the barrier layer device requires high conductivity and

low nonradiative recombination rates to achieve good performance.

The large photovoltage of the BPVE relies on the insulating properties of the absorbing

medium experienced with large bandgap materials. In the zero-temperature limit, where

intrinsic carriers do not exist, this could lead to efficiencies beyond the Shockley Queisser

limit, however, useful solar energy conversion occurs at temperatures around 300K, where

the conductivity of any low bandgap material becomes high and the photovoltage collapses.

We showed that this collapse occurs near a bandgap of 1eV for solar light intensities and

this cutoff energy only weakly depends on the assumed effective mass near the bandgap.

We explained that confusion in the recent literature regarding high energy conversion

efficiencies is mainly due to incorrect normalisation procedures. In one prominent case [16]

the light to electricity energy conversion efficiency is calculated by normalising the electrical

output power by only a small fraction of the total incoming energy flux in the radiation field,

something that was already been pointed out in [17] but has largely been overlooked by the

BPVE community. Another experimental proof of large efficiency [20] relied on severely

underestimating the absorption coefficient of the underlying material and thus normalising

the electrical output by the wrong amount of absorbed radiation. Finally, the rise of 2D

materials has lead to a large body of literature on giant susceptibilities in such monolayers.
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These susceptibilities appear giant because they are compared to 3D material susceptibilities

by normalising them by dividing by the (extremely small) thickness of the monolayer instead

of normalising by the (appreciable) absorptivity of such a layer. If 1% of the incoming light

is absorbed by the monolayer, the shift current of an effective 3D material made of a large

number N > 100 of such monolayers, is not equal to N times the susceptibility of the

monolayer, simply because of light attenuation.

We use the particular example of a GeSe monolayer to illustrate that the efficiencies

for 2D materials is not expected to be much higher than the efficiencies of well-known 3D

materials. This leads us to conclude that the efficiency estimate made by [25] still holds;

the energy conversion efficiency of the BPVE is given by approximately 10−5 to 10−6 for

good materials. None of the recently proposed materials are significantly more efficient than

this and there is no reason to expect that BPVE devices with energy conversion efficiencies

comparable to those of commercial p-n junction solar cells are possible.

APPENDIX

A. Calculation procedure for the ideal ballistic conversion efficiency

To calculate the ideal ballistic conversion efficiency of kinetic energy into electrical en-

ergy for an arbitrary dispersion, mentioned in Section IV, we need to calculate the average

distance R travelled by an electron with a given initial kinetic energy K0 against an electric

field E. Assuming random recombination we thus have

R =

∫

∞

0

dte−t/τrecvg(t) . (29)

vg(t) for ballistic transport is obtained by first calculating vg(K(t)) from the dispersion

relation. The kinetic energy as function of time is given by

K(t) = K0 − qEx(t) (30)

for the forward part of the ballistic trajectory and

K(t) = qE
(

x0 − x(t)
)

(31)

for the backward part of the trajectory. Here, x0 = K0/(qE) is the point at which the

electron has lost all of its initial kinetic energy.
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Transforming the equation for K(t) into an equation for vg(t) we obtain a differential

equation for x(t). The I-V curve is traced by varying the electric field (which is proportional

to the voltage) and calculating R (which is proportional to the current) from equation (29)

inserting vg(K(x(t))).

B. Second order susceptibility and absorptivity of a 2D material

To evaluate the potential for 2D GeSe and the 2D semi-Dirac material we use the low-

energy approximation to the tight binding Hamiltonian presented in [15]

H = σ0ǫ0 +
∑

i

σifi , (32)

where σ0 is the identity matrix and the σi are the Pauli matrices.

The shift current for linear polarized light is calculated from the 2nd order susceptibility

σabb as

Ia = σabbEb(ω)Eb(−ω) , (33)

where Eb is the electric field of the light polarized along direction b and the current is along

direction a. Alternatively, this can be written in terms of the photoresponsivity κabb, where

Ia = κabbIb with the light intensity Ib. According to [15], the photoresponsivity for a 2D

system is

κabb =
4gsπq

3

~2cǫ0

∫

d2k

(2π)2
fnmI

abb
nmδ(~ωnm − ~ω), (34)

where ωnm is the wave-vector dependent resonance frequency between band n and m, while

gs = 2 is the spin degeneracy and f12 is the difference between occupation densities of the

electronic states. We only consider non-degenerate semiconductors, where f12 ≈ 1.

For the Hamiltonian under consideration the integrand determining the shift current can

be written as [15]

Iabb12 = −
∑

ijm

1

4ǫ3

(

fmfi,bfj,ab − fmfi,bfj,a
ǫ,b
ǫ

)

εijm . (35)

Here, the subscript , a denotes the derivative towards ka, ǫ =
√

∑

fifi, and εijm is the Levi

Civita symbol.

For an electron-hole symmetric material the absorptivity for light polarized along direc-

tion a is calculated as

q2ω

2π~cǫ0

∫

d2k|ra21(k)|2δ (~ω12(k)− ~ω) , (36)
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with the a-component of the dipole matrix element ra21 and the resonance frequency ω12(k).

For the Dirac Hamiltonian of graphene this results in the famous frequency-independent

absorptivity of 2.3%.

C. Parameters for 2D GeSe and semic-Dirac materials

The momentum dependent functions fi are given by

fx = δ + αxk
2
x + αyk

2
y + αxykxky , (37)

fy = vfkx , (38)

and

fz = ∆+ βxk
2
x + βyk

2
y + βxykxky . (39)

This Hamiltonian is time-reversal symmetric but has broken inversion symmetry.

The tight binding Hamiltonian for a 2D layer of GeS is parameterized through

fx + ify = −e−ix0k
[

t1 + t2Φ(k) + t3Φ
∗(k)

]

, (40)

with

Φ(k) =
(

eia1k + eia2k
)

, (41)

and

fz = ∆ . (42)

a1 and a2 are the lattice vectors of the two-dimensional lattice, while x0 is the distance

between the orbital centers of the two different sites of the unit cell. This results in

vf = 2ax(t2 − t3) + (t1 + 2t2 + 2t3)x0 , (43)

δ = −t1 − 2t2 − 2t3 , (44)

αx = t2(ax + x0)
2 + t1x

2
0/2 + t3(ax − x0)

2 , (45)

and

αy = (t2 + t3)a
2
y , (46)

while αxy = βx = βy = βxy = 0
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The tight binding fit to the GeS bandstructure is given by [15] as ∆ = 0.41eV, t1 =

−2.33eV, t2 = 0.61eV, t3 = 0.13eV, a1 = (2.765, 0)Å, a2 = (0, 1.815)Å, and x0 = 0.62Å. In

order to calculate the efficiency of energy conversion from absorbed light to electricity we

also need the effective masses in each direction, given by

meff,x =
2q2

~2

v2f + 2αxδ + 2βx∆

Eg
= 0.643m0 , (47)

and

meff,y =
4q2

~2

αyδ + βy∆

Eg

= 1.735m0 , (48)

for this model and the parameters for GeSe.

To model a semi-Dirac material we replace the following parameters, t2 = 1.164, t3 = 0,

∆ = 0.8, and x0 = 0.6Å. This results in effective masses of meff,x = 0.219m0 and, as

intended, an almost infinite mass in y-direction of meff,y = 397.5m0.
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