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ABSTRACT

Recently, nonreciprocal structures that violate Kirchhoff’s law of thermal radiation have attracted considerable interest for their potential in
solar energy harvesting applications. However, previous research has primarily focused on mid-infrared wavelengths rather than on the main
solar wavelength range where sunlight intensity is concentrated. In this work, we theoretically demonstrate a nonreciprocal structure operat-
ing within the main solar spectrum, specifically tailored to meet the requirements of solar cell applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0246838

Conventional research on solar energy harvesting typically
assumes reciprocal systems, where a body’s spectral directional emis-
sivity and absorptivity are equal. This balance between emissivity and
absorptivity is also known as Kirchhoff’s law of thermal radiation.1

However, reciprocity of a system introduces a fundamental loss mech-
anism for solar energy harvesting. Kirchhoff’s law implies the emission
of photons to the Sun, and such emissions are inevitably wasted. This
loss prevents solar cell systems from maximizing power efficiency and
makes it impossible to reach the ultimate theoretical efficiency limit of
solar energy harvesting.2–8

In recent years, there has been increasing interest in utilizing opti-
cal nonreciprocity to enhance solar cell efficiency beyond the limits of
conventional reciprocal systems.6–10 The main idea is to direct the
emitted photons away from the Sun, rather than back toward it, and
transfer the emitted photons to another solar cell, allowing them to
contribute to additional electrical energy generation. This approach,
which requires a violation of Kirchhoff’s law, can reduce photon
energy waste and improve overall efficiency. Importantly, in this
approach, since the emission spectrum from a solar cell is relatively
narrow and is concentrated on the band edge, it is sufficient to achieve
Kirchhoff’s law violation only over a narrow frequency range.

A standard method to passively break a system’s reciprocity is to
use magneto-optical materials that have permittivity tensor in an
asymmetric form.11,12 A pioneering work on designing such nonrecip-
rocal structures was conducted by Zhu and Fan.9 They proposed a
magneto-optical photonic crystal structure consisting of n-type InAs
with an external magnetic field applied to induce a magneto-optical

effect. Their structure achieved maximal contrast between absorptivity
and emissivity for a specific direction and wavelength.

Numerous studies have since emerged to advance nonrecipro-
cal structures toward practical implementation.13 Zhao et al. pro-
posed a design similar to that of Zhu and Fan, but, with a
significantly reduced external magnetic field.14 The use of magnetic
Weyl semimetals, which do not require an external magnetic field to
induce a magneto-optical effect, has also been explored.15–17 In addi-
tion, efforts have been made to broaden the bandwidth and angular
range of nonreciprocal behavior.18–21 Furthermore, transmission-
based setups for nonreciprocal systems, rather than reflection-based
ones, have been proposed, offering a more suitable approach for con-
structing nonreciprocal multi-junction solar cells.10,22,23 Recently,
Kirchhoff’s law violation has been experimentally demonstrated in
the infrared wavelength regime.24–27

Despite continuous advancements in the field, previously pro-
posed nonreciprocal structures have been limited to operating at wave-
lengths of or longer than 1.55lm,28 with most functioning in the
range of a few to tens of micrometers. However, for nonreciprocal
structures to be effectively applied to solar cells, their nonreciprocal
behavior must occur within the main solar spectrum range. Assuming
the Sun acts as a black body at 6000K, Fig. 1 shows that at wavelengths
above 1.55lm, the spectral radiance of the Sun drops to less than 11%
of its maximum value. Therefore, for solar cell applications, a device
must operate at much shorter wavelengths. Yet, no nonreciprocal
structure that operates in the main solar wavelength regime, where
solar radiance is sufficiently high, has been reported to date.
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In addition to the operating wavelength, another important con-
sideration for solar cell applications is the inclusion of semiconductor
regions in the structure that can absorb light and convert photon
energy into electrical energy. Moreover, for maximum efficiency, the
absorption needs to be concentrated exclusively in the semiconductor
regions, as light absorbed by other materials will not contribute to elec-
trical energy and will be wasted. Therefore, all other materials, includ-
ing the magneto-optical material used to break reciprocity, must be
lossless.

Demonstrating a nonreciprocal structure that meets these condi-
tions as outlined above would represent a significant step toward the
practical application of nonreciprocity in solar cells. In this work, we
present a nonreciprocal structure specifically tailored to meet the
requirements of solar cell applications.

In the wavelength range between 400 and 1100 nm, terbium gal-
lium garnet (TGG) is a commonly used low-loss material for inducing
a magneto-optical effect.29 For our purpose of designing a nonrecipro-
cal structure that operates within the main solar spectrum, we also
select TGG as the magneto-optical material. The relative permittivity
tensor of TGG can be represented as

��e ¼
ed 0 jea
0 ed 0

�jea 0 ed

2
4

3
5: (1)

In this work, we set ed ¼ 3:8 and ea ¼ 4� 10�5. The diagonal ele-
ment ed is chosen based on the refractive index of TGG reported in the
literature.30 The off-diagonal element ea, which determines the
strength of the magneto-optical effect, is set to a realistic value achiev-
able with an external magnetic field of approximately 1T.30–33 This
field strength can be readily generated by strong permanent magnets,
such as neodymiummagnets.

Despite its widespread use, we note that the magneto-optical
effect produced by TGG is relatively weak. In fact, the limited availabil-
ity of materials capable of providing a strong magneto-optical effect is
one of the major obstacles to demonstrating nonreciprocity in the
main solar wavelength range. To overcome this challenge and achieve
strong nonreciprocal behavior using TGG, we employ a high-quality-
factor (high-Q) guided mode resonance.34 Further details on the
guided mode resonance are provided in the discussion of Fig. 2.

For the light-absorbing semiconductor that converts photon
energy to electrical energy, we use GaAs, as its bandgap energy lies
within the primary solar spectrum range. For its refractive index and
extinction coefficient, we refer to data from Ref. 35.

Using these materials, we design a structure that can violate
Kirchhoff’s law while satisfying the requirements for solar cell applica-
tions. Figure 2 shows our structure, with the optimization variables
marked. We assume TM-polarized light with wavelength k obliquely
incident on the structure at an angle h in the xz plane. Our structure is
periodic along the x direction with periodicity a and uniform along the
y direction. The TGG layer, shown in blue, has a height h2, with its
magnetization aligned along the y direction. This magnetization direc-
tion is consistent with the permittivity tensor form in Eq. (1). A thin
layer of GaAs with thickness h4 is shown in yellow, and this is the only
part of the structure where light is absorbed.

In Fig. 2, the top of the structure features a TGG grating with
width w and height h1, designed to provide guided mode resonance.
The remaining sections of the grating are filled with SiO2, shown in
violet. The refractive index of SiO2 is set at 1.47, which is a reasonable
value in the wavelength range we are considering.36 This refractive
index is well-suited for creating a high-Q resonance, as a small refrac-
tive index variation in the grating enables resonance with a narrow
linewidth.37 This high-Q guided mode resonance allows the nonrecip-
rocal effect to occur even with weak magneto-optical effect.

SiO2 also serves as a spacer between the TGG and GaAs layers
with a height h3, allowing for adjustment of the distance between these
layers to achieve critical coupling, thereby maximizing absorption. At
the very bottom, we place a perfect electric conductor (PEC) to ensure
reflection without transmission, creating two reflection-related chan-
nels, as in the work by Zhu and Fan.9

For optimizing our structure, we use a custom-built rigorous
coupled-wave analysis (RCWA) tool.38–42 This tool is designed to han-
dle anisotropic materials with 3� 3 tensor permittivity for magneto-
optical regions.43–46 Using this tool, we determine the absorptivity and
emissivity for each scenario and employ a genetic algorithm to identify
the optimal parameter values that maximize the contrast between
absorptivity and emissivity for a specific direction and wavelength.

FIG. 1. Spectral radiance of a black body at 6000 K.

FIG. 2. Our nonreciprocal structure for solar cell applications. TGG: terbium gallium
garnet, PEC: perfect electric conductor.
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The list of optimization variables and their optimized values are
summarized in Table I. Figure 2 is drawn to scale, using the geometric
parameters shown in Table I.

Figure 3 shows the absorptivity and emissivity spectra of our opti-
mized nonreciprocal structure for TM-polarized incident light at an
incidence angle of 17.7�. Due to the magneto-optical effect, the absorp-
tivity and emissivity resonance peaks are split, indicating the violation
of Kirchhoff’s law. This splitting results in a contrast of about 0.935
between absorptivity and emissivity at a wavelength of 923.5848 nm.
This wavelength falls within the main solar spectrum range and is close
to the band edge of GaAs, making it well-suited as the light-absorbing
semiconductor in this design. We note that the resonances illustrated
in Fig. 3 are very narrow, enabling significant contrast between absorp-
tivity and emissivity to occur even with the small resonance splitting
resulting from the weak magneto-optical effect of TGG.

The magnetic field distribution within the structure under the
maximum absorptivity–emissivity contrast condition is displayed in
Fig. 4. For TM-polarized light, the magnetic field is oriented along the
y direction, which is perpendicular to the plane. In Fig. 4(a), we
observe a strong magnetic field, indicating significant absorption in the
light incidence direction marked by the arrow. In contrast, Fig. 4(b)
shows a weak magnetic field in the opposite light incidence direction,
indicating minimal absorption. It has been shown in Ref. 47 that the
contrast in the two field distributions here is directly related to the

effects of Kirchhoff’s law violation. This illustrates the nonreciprocal
behavior dependent on the direction of light propagation and explains
the results shown in Fig. 3.

In conclusion, we theoretically demonstrate nonreciprocal emis-
sion and absorption behavior within the primary solar wavelength
range to meet the requirements of solar cell applications. Using TGG
as the magneto-optical material and GaAs as the semiconductor, we
achieve nonreciprocity through narrow guided mode resonance,
even with the weak magneto-optical effect of TGG. The optimization
steps in our work are general, allowing a similar process to be applied
to find other optimal designs with different parameters. For example,
as a follow-up research, we expect that a semitransparent nonrecipro-
cal structure10,22,23 suitable for solar cell applications may also be
designed using a similar optimization approach. Moreover, develop-
ing methods to achieve a more pronounced magneto-optical effect in
the main solar wavelength range would simplify the design and allow
nonreciprocity to occur over a broader bandwidth, representing a
promising direction for future work. Our work shows that nonrecip-
rocal behavior can be achieved in the main solar wavelength regime
that is important for solar cell applications, laying the groundwork
for future research to further advance nonreciprocity applications in
solar energy harvesting.

This work was supported by a grant from the Department of
Energy (Grant No. DE-FG02-07ER46426).
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TABLE I. Optimization variables and their optimized results.

Variable Description Optimized result

k Light wavelength 923.5848 nm
h Incidence angle 17.7�

a Periodicity along x direction 552 nm
w TGG width in TGG-SiO2 grating 93 nm
h1 TGG-SiO2 grating height 175 nm
h2 TGG layer height 956 nm
h3 SiO2 spacer height 16 nm
h4 GaAs layer height 32 nm

FIG. 3. Absorptivity and emissivity spectra of our optimized nonreciprocal structure
for TM-polarized light incident at an angle of 17.7�.

FIG. 4. Magnetic field distribution under the maximum absorptivity–emissivity con-
trast condition. The magnetic field is perpendicular to the plane due to TM-polarized
incident light. (a) Incidence angle of 17.7�. (b) Incidence angle of �17.7�.
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