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ABSTRACT: Interpretation of time-resolved spectroscopies such as transient absorption
(TA) or two-dimensional (2D) spectroscopy often relies on the perturbative description of
light−matter interaction. In many cases the third order of nonlinear response is the leading
and desired term. When pulse amplitudes are high, higher orders of light−matter
interaction can both distort lineshapes and dynamics and provide valuable information.
Here, we present a general procedure to separately measure the nonlinear response orders
in both TA and 2D spectroscopies, using linear combinations of intensity-dependent
spectra. We analyze the residual contamination and random errors and show how to
choose optimal intensities to minimize the total error in the extracted orders. For an experimental demonstration, we separate the
nonlinear orders in the 2D electronic spectroscopy of squaraine polymers up to the 11th order.

Nonlinear spectroscopies�from transient absorption
(TA) to coherent multidimensional spectroscopies�

require a careful balance when choosing the intensities of each
pulse. In general, increasing pulse intensity improves the signal-
to-noise ratio (SNR). The measured signal is commonly
described as a power series in the amplitudes of the pulses1 and
spectroscopies are most commonly interpreted using the
lowest-order term in that series. However, for larger pulse
intensities the neglected higher-order terms provide a
contamination of the desired signals, which physically
represents extra interactions with the pulses. Such higher-
order contamination distorts the signal spectral shape and
dynamics and complicates the interpretation.

We recently showed that these orders of response can be
separated in TA spectroscopy2 and in excitation-frequency
integrated 2D spectroscopy3 using a procedure called
“intensity cycling”, enabling the extraction of third-order
spectra even when using pulses intense enough to produce
contaminated spectra. Furthermore, contributions from higher
nonlinear orders can be separated and extracted, which reveal
valuable information about multiply excited states and
processes such as exciton−exciton annihilation.2,4 In that
intensity-cycling scheme, spectra are collected using N pump
intensities Ip obeying the intensity cycling ratios, Ip = 4I0
cos2(π(p − 1)/2N) for p = 1, ..., N, where I0 is a base intensity.
The first N response orders are extracted using formulas
derived from the connection between TA spectra and n-
quantum (nQ) signals that are frequently studied in two-
dimensional electronic spectroscopy (2DES).2,3,5,6 The nQ
signals appear in the −nk1⃗ + nk2⃗ + k3⃗ direction in a phase-
matched 2DES experiment and are centered at ωτ = nω0 where
ω0 is the carrier frequency of the pump pulses (Figure 1), ωτ is
the excitation frequency, and ki⃗ are the wavevectors of the

optical pulses. Such nQ signals have been used to access
higher-order responses,5,7−11 beyond third order, as the leading
order response increases with each multiple of ω0. Intensity
cycling also gives access to such higher-order signals using
simpler TA measurements. Intensity cycling is in some aspects
even superior to the nQ measurements since, as visualized in
Figure 1, each nQ signal has contributions from many response
orders, not only the leading (2n + 1)th-order contribution;
intensity cycling separates those contributions.
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Figure 1. Schematic higher-order contributions in 2D spectra with a
weak probe showing nQ signals at multiples of the carrier frequency
ω0, using excitation frequency ωτ and detection frequency ωt. The
lowest-order contribution to each nQ signal is S(2n), which is 2nth

order in the pump amplitudes and order 2n + 1 in the total field
amplitude. The elongation along ωτ of the nQ signal denotes the
spectral width of the nth harmonic of the excitation spectrum. For each
nQ signal, there are several contributions of different orders. While
only nQ signals with ωτ ≥ 0 are shown, equivalent nQ signals exist for
ωτ < 0.
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Here, we generalize from TA to coherently detected
2DES.12−16 In this generalization, data collected with N
pump intensities allows one to infer the first N response orders.
We show three major conclusions from this generalization.
First, the extraction of higher-order signals does not require the
specific pump intensity ratios from the previously published
intensity-cycling protocol but is feasible with arbitrary
intensities. This generalization permits the reanalysis of
previously collected and already published intensity-dependent
data. Second, the nonlinear order separation is not limited to
TA as in the prior scheme2 but can also be applied to 2DES.
Third, in the case where the pump pulses are identical except
in arrival time, we quantify how random experimental noise
and remaining contamination from unextracted higher orders
affect the inferred response orders and use that theory to
choose pump intensities that minimize the total error.

We demonstrate the technique experimentally on a
squaraine copolymer [SQA-SQB]18 (molecular structure
shown in Supporting Information Figure S1), with an average
of 18 dimer units,9,17 and show the extraction up to the 11th
order of response. Finally, we present self-consistency
conditions to verify that the response orders have been
correctly extracted.

We begin by defining the response orders and showing how
they can be extracted. We consider a sequence of L = 2 (TA)
or L = 3 (2DES) pulses which interact with the system. The
electric field at time t and position r ⃗ can be written in the
vicinity of the sample as

=
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where for pulse l, εl(t) is the complex pulse envelope with any
chirp included, ωl is the central frequency, tl is the arrival time,
and el⃗ is the polarization, which can itself vary in space or time.
We now focus on the case of coherently detected 2DES with L
= 3 pulses and later show that the conclusions also apply to
TA.

Consider that we vary the amplitude of the first two pulses,
multiplying both ε1 and ε2 by a factor λ > 0 but leaving ε3
unchanged. We do not need ε1(t) and ε2(t) to be identical. We
further define a dimensionless intensity I = λ2. We first write
down the conclusion of how the signal scales with I and
introduce a new notation S(j) to show the response orders in λj;
we then motivate the form. In the absence of noise, the
nonlinear signal can be written as

=
=

S T t I S T t I( , , , ) ( , , )
j

j
j

1
(2 )

(2)

where τ = t2 − t1 is the coherence time, T = t3 − t2 is the
population time, and t is the signal time, and we suppress the
dependence of the signal on τ, T, and t for much of this
discussion. For phase-matched TA and 2DES, S(j) = 0 when j is
odd. Consider that we want to extract the first N orders S(2) to
S(2N) in eq 2. To this purpose, we define

=
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j
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where S′(I) ≈ S(I) if I is small enough that all terms S(2j)Ij are
negligible for j > N. The orders S(2j) can be extracted by

determining S′(I) at N different intensities Ik with k = 1, ..., N,
from which eq 3 implies
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We rewrite eq 4 as S′(Ik) = ∑nVknS(2n), with Vkn = Ikn. The
matrix V is close to being a Vandermonde matrix, though it
does not have the first column of ones in a conventional
Vandermonde matrix because in coherently detected 2DES the
pump-independent background is typically removed, resulting
in S(0) = 0. The inverse matrix V −1 allows extracting S(2n) from
the S′(Ik) as S(2n) = ∑kVnk

−1S′(Ik). But the measured data are
S(Ik) and not S′(Ik), and the same procedure performed on the
measured S(Ik) gives inferred values of the S(2n), which we call
Ŝ(2n),

=
S V S I( )n

k

N

nk k(2 )
1

1

(5)

When noise and contamination beyond the truncation of eq 3
are negligible, the extracted Ŝ(2n) equal the underlying S(2n). We
show below how to estimate the contributions of both sources
of error to Ŝ(2n) for intensities Ik.

We now motivate eq 2 and describe the physical meaning of
the expansion terms S(n) by connecting back to the standard
theory of nonlinear spectroscopy. In a coherently detected
measurement, the emitted electric field is determined by the
induced nonlinear polarization P(NL) of the sample. For our
derivation, we only need that the detected fields are
proportional to P(NL)(ωt), but the proportionality can depend
on ωt, as long as it is independent of the pump-pulse
parameters. For the present analysis, we use P(NL) as a proxy for
the measured signal. The polarization P(NL) = P(3) + P(5) + ...
can be written perturbatively in E(t), see eq 1, in terms of
system response functions R(n),1 where for example

=P t t t t E t t E t t t

E t t t t R t t t

( ) d d d ( ) ( )

( ) ( , , )

(3)
3 2 1 3 3 2

3 2 1
(3)

3 2 1 (6)
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P t t t E t t E t t t E E

E R t t
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(...) ( , , )

(5)
5 1 5 5 4

(5)
5 1 (7)

where we ignore the polarizations of the electric fields for
simplicity. We now consider 2DES in a pump−probe
geometry,18 for which the phase-matching condition causes
only odd orders to contribute to the signal. The order-
separation technique is most straightforward in the weak-probe
limit, where detected signals are proportional only to the first
power of the probe amplitude ε3; we consider that limit first
and then generalize. When E in eqs 6 and 7 is expanded using
eq 1, in every term that contributes to the signal, one of the E
fields in eqs 6 or 7 must be a contribution from the probe
ε3(t), and the other two or four E fields must be contributions
from the pump pulses; combinations without ε3 do not reach
the detector, and combinations with higher powers of ε3 are
neglected in the weak-probe limit. In all terms that contribute
to the signal, when ε1 and ε2 each scale with λ, it is easy to see
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that P(2n+1) scales with λ2n = In. By comparison with eq 2, it
follows that S(2n)In = P(2n+1), so S(2n) reports on R(2n+1).
Extracting the orders S(2n) using eq 4 is then equivalent to
extracting the standard orders of response R(2n+1). In this
notation, superscripts indicate orders of response in the total
electric field and subscripts indicate orders of response in the
electric field of the pulses whose amplitudes scale with λ�the
pump pulses in our case.

If the probe pulse is strong enough that its contributions
beyond first order are not negligible, then the mapping from
S(n) to R(m) is less straightforward. In this case, P(3) is still linear
in ε3, but P(5) can have contributions that are linear or cubic in
ε3; quadratic contributions in ε3 would not obey the phase-
matching condition. We can break P(5) into portions that scale
with λ2 = I and portions that scale with λ4 = I2. The former
contributes to S(2) and is cubic in ε3 while the latter contributes
to S(4) and is linear in ε1; example pathways contributing to
both are shown in Figure 2. Pathways with n total pulse

interactions contribute to P(n), and pathways that have 2n
interactions with the pump pulses contribute to S(2n). In
general, P(2n+1) contains terms that contribute to S(2), ..., S(2n).
Conversely, S(2n) in principle has contributions from P(2n+1)

and higher orders, though the probe must have high intensity
for the higher orders to contribute significantly. TA spectros-
copy (L = 2) with the pump intensity varied also obeys eq 2
(without a τ dependence) and the same connections between
S(n) and R(m) as in 2DES.

In summary, R(n) is the usual nth-order system response
function with n being the order in the total applied electric
field including pump and probe pulses. When the amplitudes
of the pump pulses ε1 and ε2 are each scaled by the same factor
λ, S(n) is the nth-order response of the signal in λ. The particular
pulse shapes defined in eq 1, i.e., without amplitude scaling (λ
= 1), affect both P(n) (see eqs 6 and 7) and S(n). Similarly, note
that extractions performed with eq 5 depend only on the ratios
of the Ik; if all intensities Ik are expressed as multiples of a base
intensity I0, then Ŝ(2n) extracted using eq 5 simply scales with I0

n

as I0 varies, which we discuss further in Supporting
Information Section S2.

Real optical pulses also have spatial profiles not described by
eq 1, as in the usual case of focused pulses with Gaussian
lateral profiles or even with spatial chirp. In the usual limit of
local response,1 where molecules each independently interact
with the optical fields (e.g., see eq 5.13 in ref 1), the extraction
that we describe here applies equally well to optical pulses with
spatial profiles. As long as the entire pulse amplitude is scaled
with the same factor λ, the extraction of response orders S(2n) is
robust to spatial variation of the pulses as every molecule
experiences the same ratios of pulse amplitudes, so they each
individually obey eqs 6 and 7, and the scaling of these terms
with λ2n is the same for every molecule. The experimental
works of refs 2 and 3 and this manuscript use probe pulses
more tightly focused than the pump pulses, to ensure that the
pump intensities are approximately uniform over the studied
molecules; while this choice is helpful for interpretation, the
extraction of the orders of response of the signals does not
require it. Nonlocal effects, such as cascading processes,19 are
beyond the scope of the present work. We have previously
found them not to be present in similar samples of equivalent
optical depth.2

The intensity cycling method of ref 2 reduces to the form of
eq 4, but eq 4 is more general because it shows that any
sufficiently small intensities can work rather than only the
specific intensity cycling ratios reported earlier. However, the
new possibility of choosing arbitrary intensities raises the
question of what intensities are optimal for extracting the S(n).
Choosing intensities requires a balance between random and
systematic errors. Higher pump intensity generally increases
the signal and improves the SNR, but higher intensities also
increase the systematic contamination error from higher-order
terms in the truncated series of eq 2. We demonstrate how to
find the optimal intensities that balance systematic and random
error for TA and 2DES spectroscopies in the pump−probe
geometry with identical pump pulses in the weak-probe limit.
Consider that we are performing an N-intensity extraction of N
orders up to Ŝ(2N). Then we can write the measured signal S(I)
as

= + +S I S I c N I( ) ( ) ( , ) (8)

where S′(I) is the ideal signal in the absence of contamination
or random error in eq 3; c(N, I) = ∑n=N+1

∞ S(2n)In is the
systematic contamination error; and η is the random
experimental error. Our goal is to choose the intensities to
minimize |Ŝ(2n) − S(2n)| for some desired set of orders n.

We start by considering the random error with c(N, I) = 0
and consider the noise ηk on each experimental signal S(Ik) to
be independently chosen from a normal distribution with zero
mean and standard deviation σ. This choice corresponds to the
common case where noise is independent of pump intensity.
We describe in Supporting Information Section S3 how we
determine σ. We use standard error propagation techniques to
determine the resulting root-mean-square random error

=r S S( )n n n(2 ) (2 ) (2 )
2 in the estimate Ŝ(2n). In that case,

r(2n) is determined by the rows of V −1 as

=r V( )n
j

nj(2 )
1 2

(9)

When the intensities Ik are too close to each other, making V
nearly degenerate, r(2n) can become large.

Figure 2. Two sample fifth-order pathways contributing to coherently
detected 2D spectroscopy. While both pathways contribute to R(5), in
an experiment in which the pump pulse (a,b) amplitudes are varied
and the probe pulse (c) amplitude is unvaried, the left pathway
contributes to S(4), and the right pathway contributes to S(2), as can be
seen by counting the number of arrows containing either a or b. The
right pathway only contributes significantly if the probe pulse is
strong.
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We now consider the effects of higher-order contamination
and demonstrate how to estimate c(N, I) in 2DES from
intensity-dependent TA measurements. Since TA data are
faster to collect than 2DES, we use intensity-dependent TA
spectra. These TA data allow us to estimate approximate values
of both the separated orders for TA signals, S(2n)

TA , and for 2DES
signals, S(2n)

2DES, including both the N orders we want to extract
and some of the neglected higher orders. These estimates allow
us to predict the optimal set of intensities that minimize the
random and systematic error.

We use TA signals to estimate 2DES orders by exploiting a
useful connection between the two signals. When τ = 0, the
2DES experiment is identical to a TA experiment, since the
two pump pulses each with intensity I coherently add, giving a
single pump pulse with intensity 4I. Therefore, S2DES(τ = 0, T,
t, I) = STA(T, t, 4I). The factor of 4 means that, upon Taylor
expanding, S(2n)

2DES(τ = 0, T, ωt)In = 4nS(2n)
TA (T, ωt)In. We can also

break the 2DES signal into its nQ pieces as

=
=

S T I S T I( , , , ) ( , , , )t
n

n
t

2DES Q

(10)

where the SnQ for n < 0 are the Fourier conjugate partners of
the SnQ for n > 0 and do not contain extra information. The τ =
0 2DES signal can be obtained from a full integration over ωτ
from −∞ to ∞, which means integrating across all of the nQ
regions. When the nQ spectra are sufficiently spectrally
separated from each other, integrating over a window at each
nQ position in ωτ in the 2D spectrum gives SnQ(τ = 0);3 the
SnQ can also be separated at τ = 0 using phase cycling.2,20

Then, since S(2n) only contributes to rQ when |r| ≤ n, we have
∑r=−n

n S(2n)
rQ (τ = 0, T, ωt) = S(2n)

2DES(τ = 0, T, ωt). We have shown
previously that, for 2DES with identical pump pulses, ε1 = ε2,2,3

= = =S T n
n r

S T( 0, , ) 2 ( 0, , )n
r

t n
n

t(2 )
Q

(2 )
Qi

k
jjj y

{
zzz (11)

Noting that ==
nn r( 2 ) 4r n

n n (see Supporting Information
Section S4), we compare to eq 10 and conclude that

= =S T S T( , ) ( 0, , )n t n
n

t(2 )
TA

(2 )
Q

(12)

Equations 11 and 12 allow us to equate S(2n)
TA (T, ωt) with the

average value of S(2n)
rQ (ωτ, T, ωt) over its ωτ spectral range. This

connection means that if we know the contamination c(N, I) in
a TA measurement we can determine the average systematic
contamination c(N, I) for each nQ region in a 2D spectrum.
We now show how to use a model for the intensity
dependence of the TA signal to produce a model for the
intensity dependence of the nQ signals at τ = 0 via eqs 11 and
12, which we can then use to estimate c(N, I) for ωτ-integrated
2D measurements.

In many systems, TA signals saturate as pump intensity
increases, with several possible saturation forms depending on
the details of the studied system. For this discussion, we
assume

=S T I S T e( , , ) ( , )(1 )t t
I I TTA

max
/ ( , )tsat (13)

where Smax(T, ωt) and Isat(T, ωt) characterize the exponential
saturation form.21 We again suppress the T, ωt dependence for
the rest of this discussion. Using this saturation model, we
derive an analytical model (see Supporting Information
Section S5 for proof)

= =

=
=

=
S I S I

S
e I I n

e I I n

( 0, )

(2 / ) 1 for 0

( 1) (2 / ) for 1

n

r n
r

n r

I I

n I I
n

Q
(2 )

Q

max

2 /
0 sat

2 /
sat

sat

sat

l
m
ooo
n
ooo

(14)

where n is the modified Bessel function of the first kind, with
SnQ(τ = 0, I) plotted in Figure 3a. This form predicts that if the

TA spectrum saturates like eq 13 then the τ = 0 nQ spectrum
for n ≥ 1 has a maximum amplitude at finite I, unlike the TA
signal itself. These maxima occur at 0.77, 2.28, 4.76, and 8.26
times Isat for n = 1, 2, 3, and 4, respectively. Such maxima have
not yet been observed, to our knowledge.

This exponential saturation form is frequently a good
description of TA spectra, but the method described here can
be applied to any model with a Taylor series that has a finite
radius of convergence. For example, some systems obey a

Figure 3. Choice of optimal intensities. (a) Saturation behavior of TA
signals and nQ signals at τ = 0. The TA and 0Q signals saturate at the
same Smax, while all nQ signals with n ≥ 1 have maxima at finite
intensity (circles). The TA signal is plotted as STA(4I) so the sum of
the nQ signals for all n is the TA signal, as implied by eq 10. The sum
of the nQ contributions from n = −4 to 4 is shown (brown), and it
agrees well with the TA curve (black) up to Isat. Including larger n
would improve the agreement. (b) Error in extracting lowest-order
TA signal as a function of pump intensity I for three values of
saturated noise-to-signal ratio σ̃ = σ/Smax. At low intensities, random
error dominates, while at higher intensities, the systematic error
dominates. The minimum error (circles) occurs at lower I when σ̃ is
smaller.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.5c01177
J. Phys. Chem. Lett. 2025, 16, 5897−5905

5900

https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01177?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01177?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01177?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01177?fig=fig3&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.5c01177?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


saturation model called “saturable absorption” in which
= +S I S( ) I

I I
TA

max
sat

.22,23 The Taylor series for saturable

absorption only converges for I < Isat. In the Supporting
Information Section S6.2, we show that order extraction can
also work using a saturable absorption model.

The saturation form of eqs 13 and 14 allows us to determine
the measured Ŝ(n) that would be extracted from an experiment
using N intensities Ik, where here we ignore the random error.
Since we know the exact answers S(n) from the Taylor series of
eq 14, we can determine the effect of contamination error on
Ŝ(n). For example, consider the nQ spectrum from eq 14. We
evaluate SnQ(τ = 0, Ik) and use eq 5 to calculate the
contaminated response orders Ŝ(2m) for m = 1, 2, ..., N from
those N values. The systematic error in order 2n is c(2n) ≡ Ŝ(2n)
− S(2n).

We now combine the random and systematic errors by
assuming that r(2n) and c(2n) are independent and add in
quadrature. For either TA spectra or τ = 0 nQ spectra, we
define a total relative error e by taking the mean square error of
M ≤ N orders

=
+

=
e

M

r c

S
1

n

M
n n

n

2

1

(2 )
2

(2 )
2

(2 )
2

(15)

For n where S(2n) is 0 we replace the denominator with 1,
which gives the absolute error for that term; this condition
occurs, for example, for S2Q(I) where S(2)

2Q = 0. Such absolute
errors depend on the choice of I0 that defines the intensity
scale. With this definition for e, we then find the set of N
intensities Ik that minimizes e. This procedure depends on
Isat(T, ωt) and Smax(T, ωt), so e can be minimized at a
particular value of T and ωt or averaged over them.

We first demonstrate this method to find the optimal
intensity I for extracting the lowest-order TA signal S(2)

TA with N
= 1 intensity. In this case e has a simple form. The lowest-order
term of the Taylor expansion of eq 13 is S(2)I = −SmaxI/Isat. For
a single choice of intensity there is no Vandermonde inversion,
and Ŝ(2) = −Smax(1 − e−I/Isat)/I. Then we find

= + +
e I

I
I I

I
( )

1 exp( )2 2i
k
jjj y

{
zzz

i
k
jjjj

y
{
zzzz

(16)

where σ̃ ≡ σ/Smax and I ̃ ≡ I/Isat. Figure 3b shows eq 16, along
with the optimal I,̃ for three values of σ̃. The optimum
(minimum) occurs at higher intensity when the noise is larger.
We show the optimization of order extraction from TA spectra
with multiple pump intensities in Supporting Information
Section S6.3. We demonstrate the use of eq 15 for 2D spectra
with the experimental results below.

As an experimental demonstration, we perform order
separation in coherently detected 2DES of a squaraine
copolymer, [SQA-SQB]18, in the weak-probe limit. The
squaraine copolymer is dissolved in toluene, leading to the
formation of a J-type polymer (see absorption spectrum in
Figure 4a).24 To choose our pulse intensities for 2DES, we
begin with TA spectra with 101 different pulse intensities at a
fixed pump−probe delay (i.e., population time) of T = 2 ps.
We do not vary the pulse envelope shape or the spot size, so
we refer to pulse intensities in this work by stating the energy
per pulse. Pulse parameters and how they are determined are
discussed in Supporting Information Section S7. We fit the
dependence of the TA spectra on the pump intensity to the

saturation form of eq 13, finding excellent agreement (Figure
S2), with Isat varying from 27 nJ to 106 nJ for ℏωt from 1.50 to
1.76 eV. We optimize the error using Isat at ℏωt = A = 1.58 eV
corresponding to the maximum of the absorption spectrum,
which yields Isat = 46 nJ and Smax = 0.054. We use σ̃ = 9 × 10−6

with σ = 5 × 10−7, as determined in Supporting Information
Sections S3 and S6.1. Table 1 shows the minimal error e and
optimal choices of intensities Ik for 1Q and 2Q spectra where

Figure 4. Extracted 2D spectra. (a) Absorption spectrum of [SQA-
SQB]18 in toluene. The vertical dashed lines indicate spectral
positions of features in the 2D spectra. (b) Extracted 1Q (left) and
2Q (right) 2D spectra of [SQA-SQB]18 in toluene up to Ŝ(10) in the
weak-probe limit. Diagonals (black dashed lines) are drawn at ℏωτ =
ℏωt for the 1Q signal (left) and ℏωτ = 2ℏωt for the 2Q signal (right).
Black arrows mark the NESA signals in the higher-order 1Q spectra,
as defined in the text.
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we are only interested in the accuracy of M = 3 orders, even
when extracting N > M orders. In general, increasing N
improves the results. If, however, any of the optimal intensities
exceeds the maximum pulse intensity experimentally available
Imax, then we find an optimal N to minimize the error in the
extraction, and further increases in N degrade the extractions.
In our case, Imax = 15 nJ. Our value of Imax does not impact the
error estimates for N ≤ 4, but does change the error estimates
for N > 4, with N = 5 being the optimal choice for 1Q signals.
We use the N = 5 intensities from Table 1 that minimize the
error in extracted 1Q orders, with intensities 1.2, 5.5, 10, 14,
and 15 nJ. Note that while the optimal intensities are different
for the 1Q and 2Q spectra, after optimal intensities exceed Imax,
those differences become negligible, giving a clear set of
intensities to use for both 1Q and 2Q spectral positions.
Immediately after the intensity-dependent TA measurements
to extract Smax and Isat and random noise analysis, we carry out
intensity-dependent 2D measurements while maintaining the
same experimental conditions, such as pulse overlap, spot size,
and laser spectra. The intensity-dependent 2DES at 1Q and
2Q positions are shown in Figure S4. We extract nonlinear
orders from Ŝ(2) to Ŝ(10) using eq 5, with results at the 1Q and
2Q positions shown in Figure 4b, where the dimensionless
intensities {Ik} are obtained by dividing the pulse intensities by
I0 = == I 9 nJ

N k
N

k
1

1 (see Supporting Information Section
S2). As required theoretically, the Ŝ(2) contribution to the 2Q
signal is small�essentially noise (upper right panel). We
compare the extracted Ŝ(2) to a low-intensity reference ŜL in
Figure S5, which shows differences only on the noise level.

The higher-order signals (Figure 4b) contain expected
features as well as new information not present in low-order
spectroscopies. With reference to the labels in Figure 4a, the
dominant features in Ŝ(2)

1Q are centered at ℏωτ = C = 1.65 eV,
slightly blueshifted compared to the main absorption peak at A
= 1.58 eV, and the dominant features in Ŝ(4)

2Q are at ℏωτ =
3.32 eV, even more blueshifted compared to twice the energy
of the absorption peak. These shifts could be due to the pump
spectra, which are blue-weighted (Figure 4a). Unlike in the raw
data (Figure S4), at each order the signs of the dominant
features are identical in both 1Q and 2Q spectra (Figure 4),
and those signs alternate with increasing order. This
alternation was previously observed.2 Reference 4 explained
this sign change by showing that there are pathways
contributing to S2(n+1) with the same (T, ωt) evolution as for
S(2n) but with opposite signs; it called these pathways
“negations,” such as a negated excited-state absorption
(NESA) in S(4) that negates the standard ESA pathway in
S(2). The 2DES were taken at T = 2 ps (Figure 4b), where the
fifth-order 2Q signal reaches its maximum2 and energy transfer
within the singly excited manifold to the lowest-energy state

has occurred.25 The extracted 1Q spectra exhibit three
prominent peaks on the excitation axis at ℏωτ = A, C, and
D. The spectral positions of the absolute signal maxima of S(2n)

1Q

on the detection axis lie at ℏωt = A and show no observable
shift in ωt with order. However, for ℏωτ > A, the signal with
ℏωt > A vanishes for increasing order, leading to a narrowed
lineshape in ωt direction. In contrast, the spectral position of
the absolute signal maxima of the raw data (Figure S4) show
an apparent blueshift in ωt [from ℏωt = 1.569 eV (1.2 nJ) to
1.582 eV (15 nJ)] at high intensity, also observed in other
systems.26 This blueshift arises from the overlap of Ŝ(2n)
exhibiting different signs and lineshapes and not due to a ωt
shift in the Ŝ(2n) themselves. The blueshift emphasizes the
importance of higher-order separation, as even small
contaminations can significantly affect the lineshape when
the lowest-order signal is desired.

The high-order 1Q response reveals a pathway hidden in the
leading-order 1Q spectrum. The higher-order 1Q signals
exhibit a pronounced feature at ℏωτ = A and ℏωt = B (black
arrows, Figure 4b), which is not present in Ŝ(2)

1Q . In Ŝn > 2
1Q , these

features exhibit an opposite sign compared to each order’s
most prominent feature, at (A, A), and they are not prominent
in the raw data at any intensity (Figure S4). We previously
demonstrated that a negative feature appearing in Ŝ(4), which is
not present in Ŝ(2), can occur if 1-excitation signals are masked
in Ŝ(2) due to destructive interference of signal contributions.4

Physically, one would expect an ESA peak at (A, B) in the Ŝ(2)
signal corresponding to pump excitation to the A exciton
(Figure 4a) and probe excitation to a biexciton state at the
frequency A + B. Supporting Information Section S10 uses a
toy model to show that the NESA peak in S(4)

1Q is generally
more visible than the ESA peak in S(2)

1Q when the A and B states
arise from a weak coupling. While this manuscript is focused
on the introduction of the high-order 2DES technique itself,
this discussion shows just one piece of useful spectral
information visible in the high-order and not in the leading-
order spectra.

We now outline a procedure to verify that the response
orders Ŝ(n) have been correctly extracted with the chosen set of
intensities {Ik}, independent of the model-based error analysis
presented above. Equation 11 shows that the extracted orders
Ŝ(2n)

rQ (τ = 0, T, ωt)/ nn r( 2 ) with fixed order n, should be equal
at all T and ωt, if r ≤ n. Signals with r > n should be zero. If
these relations do not hold, it is model-independent evidence
of error in Ŝ(2n). We find Ŝ(2n)

rQ (τ = 0) by integrating Ŝ(2n)
rQ (ωτ),

divide by nn r( 2 ) if r ≤ n, and plot the results in Figure 5.
Fulfilling the self-consistency check, the Ŝ(2)

rQ for r ≥ 2 are zero
(Figure 5 top, green and orange curves), while the normalized
0Q and 1Q signals are equal (Figure 5 top, blue and red

Table 1. Errors in Extracting 1Q and 2Q Spectra at τ = 0 Using Equation 15 for Several Choices of Number of Intensities Na

N 1Q error Optimal I/Isat for 1Q 2Q error Optimal I/Isat for 2Q

3 0.06 0.0149, 0.060, 0.095 0.14 0.018, 0.073, 0.12
4 0.037 0.023, 0.10, 0.18, 0.24 0.064 0.027, 0.12, 0.21, 0.27

5
Imax = 15 nJ 0.029 0.027, 0.12, 0.22, 0.30, 0.33 0.072 0.027, 0.12, 0.22, 0.30, 0.33
Imax = ∞ 0.021 0.030, 0.13, 0.26, 0.37, 0.44 0.040 0.033, 0.15, 0.29, 0.42, 0.49

6
Imax = 15 nJ 0.083 0.020, 0.088, 0.17, 0.25, 0.31, 0.33 0.21 0.020, 0.088, 0.17, 0.25, 0.31, 0.33
Imax = ∞ 0.014 0.035, 0.16, 0.33, 0.50, 0.63, 0.71 0.029 0.038, 0.18, 0.35, 0.54, 0.69, 0.77

aWe use σ̃ = 9 × 10−6, found in the spectra leading to Figure 4. We show optimal intensities for the case of unbounded I and also for the case where
I is not allowed to exceed Imax = 15 nJ. For N = 3 or N = 4, the optimal Ik does not exceed the bound. Bold values show the minimal error
achievable when I is bounded.
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curves). Similar to the lowest-order signal, the integrated and
normalized extracted orders Ŝ(4)

0Q and Ŝ(4)
1Q overlap nearly

perfectly (Figure 5 bottom, blue and red curves). The Ŝ(4)
2Q

signal shows some systematic deviation from the 0Q and 1Q
(Figure 5 bottom, green curve), with a slight decrease of the
peak at 1.56 eV and an increased blue shoulder indicating a
small systematic error. One potential source of the remaining
error comes from fluctuations of the applied pulse intensities.
The Ŝ(4)

3Q signal (Figure 5 bottom, orange curve) is supposed to
be zero but shows a small deviation near 1.57 eV, indicative of
contamination. Overall, the self-consistency checks demon-
strate reasonable extraction of the nonlinear signals and
support the conclusion that the lowest-order extractions Ŝ(2)

rQ

are essentially uncontaminated, while Ŝ(4)
rQ have some

contamination.
All signals in nonlinear spectroscopy strongly rely on the

intensities of the excitation pulses. While a sufficiently high
pulse intensity is necessary to measure a signal stronger than
the noise level, higher-order terms that may be undesired can
contribute to the measured signal. Here, we generalized the
recently developed intensity-cycling method to not require
specific intensity ratios between the spectra. As a result, the
presented order-separation technique can be applied to
previously collected intensity-dependent spectra. In addition,
the new scheme is applicable not only to TA data, as in the
previously reported extraction procedure, but can also be used
to separate nonlinear orders in 2DES. We showed how to use
the connection between TA spectra and excitation-frequency-
integrated 2DES spectra to estimate the systematic errors in a
high-order extraction and thus to choose optimal pump
intensities for the extraction. We demonstrated the method on
coherently detected 2DES measurements on squaraine
copolymers [SQA-SQB]18 in the weak-probe limit and showed
that the high-order 1Q spectra reveal an ESA peak that is
masked in the lowest-order spectrum. While we focus in this

publication on TA and coherently detected 2D spectroscopy,
the procedure presented here is readily adaptable to other
spectroscopies such as transient grating, action-detected 2DES,
or time-resolved photoemission spectroscopy.27−31

■ EXPERIMENTAL METHODS
The intensities and delays of the pump pulses were altered by
an acousto-optic modulator pulse shaper on a shot-to-shot
basis, which also chopped every second pump pulse, in a
partially noncollinear pump−probe setup. The pump beam
was blocked after the sample, and the probe beam was
detected shot-to-shot via a spectrometer and line camera. For
the correction of the 2D data, five 2D measurements with
pump pulse energies (1.2, 5.5, 10, 14, 15) nJ were taken with
the pulse shaper maintaining the same pulse envelope for each
τ step. Simultaneously we measured a low-excitation-intensity
reference at 0.16 nJ. All 2D spectra were taken with 299 steps
in τ of step size 0.37 fs at a population time of T = 2 ps. For
every average, all six 2D measurements were taken
consecutively before repeating the pulse sequence. For setup
details and signal processing see Supporting Information
Sections S7 and S8.
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S1 Molecular structure

The experimental sample is a squaraine copolymer [SQA-SQB]18 (Figure S1) dissolved in toluene. On average, the

copolymer consists of 18 [SQA-SQB] dimer units; for details on the degree of polymerization, see Reference 1. The

synthesis of the copolymer was carried out as described previously.1,2

SQA SQB

R =

18

N

O

OR

N
R

CN
NC

O
N

N

R

R

Figure S1: Chemical structure of the copolymer [SQA-SQB]18 , consisting on average of 18 [SQA-SQB] dimer units.

S2 Effects of choosing the base power

In the main text we discuss the order extraction using unitless intensities, as in Eq. 5. In such a case, the extracted

orders Ŝ(n) all have the same units. Nonetheless, the extracted orders depend on the choice of what intensity is

labeled to be 1. Consider that we choose to scale intensities with the dimensionful intensity I0. Then a pulse with

dimensionful intensity Ī has dimensionless intensity I = Ī/I0. We here briefly discuss the impact of the choice of

base intensity I0. Reproducing Eq. 2 from the main text here,

S(τ, T, t, I) =

∞∑
j=1

S(2j)(τ, T, t)I
j , (S1)

S(τ, T, t, Ī) =

∞∑
j=1

S(2j)(τ, T, t)

(
Ī

I0

)j

. (S2)

We define

s(2j)I
j
0 = S(2j), (S3)

which gives

S(τ, T, t, I) =

∞∑
j=1

s(2j)(τ, T, t)Ī
j , (S4)

which yields the expansion in terms of intensities with units. This form demonstrates that S(2j) ∝ Ij0 , and therefore

the choice of I0 scales the S(2j) by a factor of Ij0 , and so sets the scales for each extracted order. The choice of I0 has

no other effect on the measured quantities. In the main text and below, we refer to intensities I as having dimensions

of nJ where we believe it is unambiguous; in such cases, the dimensionless intensities use I0 = 9 nJ as a reference.
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S3 Random error

For the random error ηk we determine the standard deviation in the raw 2DES data S(Ik) by analyzing the low-

intensity reference measurement. The data, collected for M different values of τ , is processed as described below in

Section S8 to obtain the signal as a function of ωτ . The goal is to find the contribution of random noise to SnQ(τ = 0),

which are the objects for which Eq. 14 allows us to estimate the systematic error. We construct that noise by assuming

that the noise at each of the M values of τ is independently chosen from a normal distribution with zero mean and

standard deviation στ . We cannot measure στ easily in our data, but we can easily measure the noise σω in ωτ

regions where no signal is expected. Here we show how the noise propagates into the frequency-domain signals and

how measurement of the typical noise in a signal-free region of ωτ can give the desired expected noise on SnQ(τ = 0).

The result is Eq. S10, below.

In our signal analysis (Section S8), the data are reflected from positive to negative τ with the point at τ = 0 not

duplicated. We then have M ′ = 2M − 1 points along the τ axis. For this discussion, we use S(τ) to refer to the

τ -domain signal and S̃(ωτ ) to refer to the frequency-domain signal.

We choose to put the 1/M ′ normalization on the forward discrete Fourier transform,

S̃(ωτ , T, ωt, I) =
1

M ′

∑
τ

S(τ, T, ωt, I)e
iωτ τ . (S5)

The inverse discrete Fourier transform is then

S(τ, T, ωt, I) =
∑
ωτ

S̃(ωτ , T, ωt, I)e
−iωτ τ . (S6)

We choose this convention so that the τ = 0 point is a simple sum of the frequency-domain signal,

S(τ = 0, T, ωt, I) =
∑
ωτ

S̃(ωτ , T, ωt, I). (S7)

Similarly, if we wish to obtain the window-integrated nQ signals at τ = 0, we take the restricted sum

SnQ(τ = 0) =
∑′

ωτ

S̃(ωτ ), (S8)

where the sum ranges depend on n.

After reflection, S(τ) is real and symmetric, which means that S̃(ωτ ) is also real and symmetric. We can take

the positive-frequency components as being independent normally distributed noise with standard deviation σω. To

find the variance σ2
ω, we note that the variance of each ηk is σ2

τ . Then from Eq. S5, the Fourier transform adds η0

with variance σ2
τ to two times cos(ωττi)ηi for each of the M − 1 terms with τi > 0. Each of those terms has variance

4 cos2(ωττi)σ
2
τ . The variance of the sum can be found by replacing cos2 with 1/2. Dividing by M ′ as in Eq. S5 gives
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the root-mean-square (rms) noise amplitude at ωτ 6= 0,

σω = στ

√
1 + 2(M − 1)

M ′ =
στ√
M ′

(S9)

When summing over L positive frequencies, as in Eq. S8, the rms magnitude of the sum is
√
Lσω, since the

frequency-domain signals are approximately independent real quantities with standard deviation σω. As a sanity

check, we can sum over all frequencies to ensure that the noise in τ domain has standard deviation στ . The noise at

ωτ = 0 has variance σ2
ω. Each of the M − 1 nonnegative frequencies is counted twice since the spectrum is symmetric

and has variance 4 cos2(ωττ)σ
2
ω. For τ 6= 0, we can again approximate the cos2 as 1/2, giving a total variance of

σ2
ω[1 + 2(M − 1)] = σ2

ωM
′, which is σ2

τ , as desired, according to Eq. S9. There are in fact some subtle correlations in

the frequency-domain noise to ensure that the variance at τ = 0 is also σ2
τ .

For the nQ signals at τ = 0, we do not sum over all M ′ frequency points. If the nQ window has M ′
window frequency

points along ωτ , the rms noise amplitude of SnQ(τ = 0) is the sum of M ′
window independent values of amplitude σω,

giving the σ we use in the main text of

σ =
√

M ′
windowσω. (S10)

This result shows how to take an observed value of noise in frequency domain σω and get the effective noise relevant

to the signals in Eq. 14 of the main text.

Our goal is to estimate the noise in SnQ(τ = 0), which is found by summing only over positive frequency bins. We

determine σω by computing the rms average signal in the region where 0.6 eV < ωτ < 0.9 eV and 1.5 eV < ωt < 1.8 eV,

which is in between the 0Q and 1Q signals’ spectral positions, and we consider it to be free of signal and to contain

only noise. We find by eye that the signal fluctuates around zero and thus is dominated by noise. Any systematic

signal present is expected to come from the wings of the 0Q and 1Q signals, and therefore to vary with ωt. For each

ωt, we therefore compute the mean signal along the ωτ -axis in this region. We subtract the mean, which is still a

function of ωt. We then compute the rms average of the signal over both ωτ and ωt in this region, assuming that the

noise is independent of ωt. We find σω = 6.6×10−8, so Eq. S10 gives σ = 6×10−7. We round this result to 5×10−7.

We have M ′
window = 85, i.e., the number of pixels within the nQ regions (ω0[n− 1/2, n+ 1/2] for ω0 = 1.59 eV).

S4 Connection between TA and 2DES signals

We here discuss in more detail the derivation of Eq. 12, reproduced here:

STA
(2n)(T, ωt) = SnQ

(2n)(τ = 0, T, ωt). (S11)

We begin with the identity S2DES(τ = 0, I) = STA(4I), where the factor of four originates in the different conventions

for labeling intensity in the same experiment. In 2DES, there are commonly two identical pump pulses, each of
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intensity I. When they overlap at τ = 0 they form a single pump pulse of intensity 4I. In contrast, a TA experiment

has only a single pump pulse, whose intensity is labeled I. Thus in order to compare results, the factor of 4 is needed.

Expanding S2DES(I) =
∑

n S2DES
(2n) In and STA(I) =

∑
n STA

(2n)I
n, it follows that S2DES

(2n) (τ = 0) = 4nSTA
(2n). By the

properties of the Fourier transform, we have that

S2DES
(2n) (τ = 0) =

∫
dωτS

2DES
(2n) (ωτ ), (S12)

which is equivalent to

S2DES
(2n) (τ = 0) =

∞∑
r=−∞

SrQ
(2n)(τ = 0), (S13)

which includes r < 0 signals centered at ωτ < 0. The integral and the sum are equivalent, so long as the windows

used to integrate the rQ signals are contiguous and span the entire ωτ axis. These nQ signals with n < 0 obey[
S−|n|Q(−ωτ )

]∗
= S|n|Q(ωτ ), as required given that the time-domain signal in pump–probe geometry is real. The

imaginary parts cancel upon full integration over ωτ , or equivalently summing over all nQ. Then at each order we

have

∞∑
r=−∞

SrQ
(2n)(τ = 0) = SnQ

(2n)(τ = 0)
n∑

r=−n

(
2n

n− |r|

)
, (S14)

where the left-hand side comes from Eq. 11. We prove below that
∑n

r=−n

(
2n

n−|r|

)
= 4n, and we conclude that

∞∑
r=−∞

SrQ
(2n)(τ = 0) = 4nSnQ

(2n)(τ = 0) (S15)

and so at each order we have

SnQ
(2n)(τ = 0) = STA

(2n). (S16)

We now prove that
∑n

r=−n

(
2n

n−|r|

)
= 4n using the binomial theorem. We consider (x+ y)2n, which we expand as

(x+ y)2n =

2n∑
k=0

(
2n

k

)
xjy2n−j = 2

n∑
k=0

(
2n

k

)
xjy2n−j −

(
2n

n

)
(S17)

where in the last equality we subtract the double-counted term when summing only to n instead of 2n. Then let

x = y = 1 and let r = n− k, so

4n = 2

n∑
r=0

(
2n

n− r

)
−

(
2n

n

)
. (S18)

Note that for any function fr, we have 2
∑n

r=0 fr = f0 +
∑n

r=−n f|r|. We then have

4n =

n∑
r=−n

(
2n

n− |r|

)
. (S19)
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S5 Analytical saturation model for 2DES signals

Here we show that if the intensity-dependent TA signal follows an exponential saturation model as in Eq. 13,

STA(T, ωt, I) = −Smax(T, ωt)
(
1− e−I/Isat(T,ωt)

)
, then the nQ signals at τ = 0 obey

SnQ(τ = 0, I) =

∞∑
r=n

SnQ
(2r)I

r = Smax


e−2I/IsatI0(2I/Isat)− 1 for n = 0,

(−1)re−2I/IsatIr(2I/Isat) for n ≥ 1,

(S20)

which is Eq. 14. We begin by taking the Taylor series of STA to get

STA(I) = Smax

∞∑
j=1

(−1)j

j!

(
I

Isat

)
. (S21)

From this form, we immediately have

STA
(2j) = Smax

(−1)j

j!Ijsat
. (S22)

Then using Eqs. 11 and 12 , we have SrQ
(2n)(τ = 0) =

(
2n
n−r

)
STA
(2n), which gives

SrQ
(2n)(τ = 0) =

(
2n

n− r

)
Smax

(−1)n

n!Ijsat
(S23)

and therefore

SrQ(τ = 0, I) = Smax

∞∑
n=1

(
2n

n− r

)
(−1)n

n!

(
I

Isat

)n

. (S24)

This series can be summed in closed form, and Mathematica gives Eq. S20.

We note that this same procedure can be completed for any model STA(I), so long as it has a Taylor series with a

finite radius of convergence, though a closed form may be impossible to find. For example, we demonstrate the same

procedure for the case called “saturable absorption” in Section S6.2.

S6 Choosing optimal intensities

The main text presents the theoretical background for estimating random and systematic (contamination) errors

for 2DES in the weak-probe limit, allowing determination of optimal intensities. Here, we show the details of the

experimental procedure.

S6.1 Systematic error: exponential saturation

For the systematic error, we find the parameters Isat and Smax from the saturation form of the TA spectra. We

performed TA measurements for 101 linearly spaced excitation-pulse intensities between 0.27 nJ and 276 nJ at a

population time T = 2 ps with identical pulse envelope shapes, with intensity controlled by the pulse shaper and

all other experimental parameters kept unchanged. Figure S2a shows one such saturation curve, at the peak linear-
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absorption energy ~ωt = A = 1.58 eV. A fit (grey line) to

Sexponential
TA (I) = −Smax(1− e−I/Isat), (S25)

which is Eq. 13, is shown. Figures S2b and c show Smax and Isat, respectively, extracted from such a fit at each ωt.

We find Isat ranging from 27 to 106 nJ and Smax ranging from 2.0 to 55.6 ∆mOD within the spectral range between

1.50 eV and 1.76 eV. Our goal is to choose Smax and Isat that are typical for the spectrum and/or at an ωt important

for the 2D spectra. In the main text, we use the values at A, the peak in the absorption spectrum. The standard

errors in the extracted parameters are smaller than 1.5 nJ and 0.2 ∆mOD for Isat and Smax, respectively, consistent

with the high quality of the fits.
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Figure S2: Systematic error estimation using power-dependent TA data. (a) Measured STA(I) at ~ωt=A= 1.58 eV
and fit to Eq. 13 (grey) and Eq. S26 (magenta). (b) Fit parameter Smax for all ωt and linear absorption spectrum.
(c) Fit parameter Isat for all ωt. The dashed lines at 1.58 eV indicate the frequency shown in a, which is also used
for the optimal intensity calculation.

S6.2 Systematic error: saturable absorption

While Figure S2a (grey line) shows the good quality of the exponential saturation form for fitting STA(I), we also

consider saturable absorption, defined by

Ssat
TA(I) = −Smax

I

I + Isat
. (S26)
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Just like Sexponential
TA (I), this form has a known Taylor series, Ssat

TA(I) = −Smax
∑∞

n=1

(
−I
Isat

)n
. This power series is

convergent only for I < Isat, unlike in Eq. S25. We now show how the analysis of the main text for exponential

absorption can be straightforwardly adapted to Ssat
TA to find the optimal intensities for a 2DES experiment focused

on a particular nQ spectral region. Then we show how well our TA results fit Eq. S26 and the optimal intensities for

2DES suggested by those fits. Finally, we compare both saturation models with the extracted 2D data.

As in Eq. S23, we connect the TA response orders Ssat
TA,(n) = −Smax(−1/Isat)

n to the rQ response orders,

SrQ
(2n)(τ = 0) =

Ssat
TA,(n)︷ ︸︸ ︷

−Smax

Insat
(−1)n

(
2n

n− r

)
. (S27)

Then letting Ĩ ≡ I/Isat,

SrQ(Ĩ , τ = 0) =
∑
n

SrQ
(2n)(τ = 0)In = Smax

∑
n

(−1)n+1

(
2n

n− r

)
Ĩn = Smax(−4Ĩ)r

 1(√
4Ĩ + 1 + 1

)2r√
4Ĩ + 1

− δr0

 ,

(S28)

where δij is the Kronecker delta function and the last identity comes from Mathematica. For saturable absorption, this

new function replaces the modified Bessel functions that we found for exponential saturation. Note that SrQ(Ĩ , τ = 0)

has a power series that is convergent only for Ĩ < 1/4.

For a given set of pump intensities {Ĩk}, we perform the Vandermonde extraction of ŜrQ
(2n) using Eq. 5 and define

the systematic error as before, by comparing the Vandermonde-extracted SrQ
(2n)(τ = 0) to the exact values in Eq. S27.

We use the same noise σ as in Section S3. The updated optimal errors and pulse intensities are shown in Table S1,

which is equivalent to Table 1 in the main text.

Table S1: Equivalent to Table 1 but using saturable absorption for the TA spectra instead of expo-
nential saturation. Errors in M = 3 orders in 1Q and 2Q spectra at τ = 0 for several choices of number
of intensities N . We use σ̃ = 7.7× 10−6, with σ as in Section S3 and Smax = 0.065 ∆OD.

N 1Q error Optimal I/Isat for 1Q 2Q error Optimal I/Isat for 2Q
3 0.15 0.0067, 0.027,0.043 0.22 0.0082, 0.033, 0.053
4 0.08 0.0092, 0.040, 0.074, 0.10 0.14 0.011, 0.047, 0.086, 0.11
5 0.06 0.011, 0.050, 0.097, 0.14, 0.17 0.11 0.012, 0.057, 0.11, 0.16, 0.19
6 0.05 0.012, 0.056, 0.11, 0.18, 0.23, 0.25 0.09 0.014, 0.063, 0.13, 0.20, 0.25, 0.28

For a system obeying saturable absorption, contamination errors are larger than for a system with exponential

saturation, so the optimal intensities for order extraction are lower. Similarly, with fixed saturated noise-to-signal

ratio σ̃, the minimum possible errors in order extraction are higher. These phenomena also mean the optimal intensity

selection is less affected by Imax. In our case, the optimal intensities do not exceed Imax until N = 8. We note that

even though the power series for SrQ(I, τ = 0) are divergent for I > Isat/4, the optimal intensities for order extraction

can exceed Isat/4. Using the experimental intensities, which were chosen using the exponential saturation form, we

find expected 1Q and 2Q errors of 0.29 and 0.39, respectively. This error is largely due to contamination, since the

experimental intensities exceed Isat.
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Figure S2 shows that the intensity-dependent TA data are well fit by the exponential saturation form, Eq. 13, but

the saturable form of Eq. S26 fits just as well. This observation raises the question whether the intensities used for

the order extraction were, in fact, optimal. The 2D data must be consistent with the TA data when integrating over

ωτ . In particular, the two saturation forms make different predictions for SrQ
(2n)(τ = 0),

SrQ
(2n),exp(τ = 0) =

Smax

Insat

(
2n

n− r

)
(−1)n+1

n!
, (S29)

SrQ
(2n),sat(τ = 0) =

Smax

Insat

(
2n

n− r

)
(−1)n+1. (S30)

Equations S29 and S30 do not include the effects of systematic errors. Therefore, instead of comparing our extracted

orders to these Taylor series expansions, we compare the experimental extracted orders to the theoretical extractions

ŜrQ
(2n),exp and ŜrQ

(2n),sat that are obtained by evaluating the respective intensity-dependent models, equations S20 and

S28, at the experimental pulse intensities, and applying Eq. 5 of the main text. Using the extracted SrQ
(2n)(ωτ , T, ωt),

we window-integrate over ωτ to obtain SrQ
n (τ = 0, T, ωt). We compare the experimental results to ŜrQ

(2n),exp and

ŜrQ
(2n),sat with fixed r and varying n. Figure S3 shows the ŜrQ

(2n)(τ = 0, T, ωt) at T = 2 ps and I0 = 9 nJ for

ωt = 1.57 eV and 1.58 eV along with ŜrQ
(2n),exp(τ = 0) and ŜrQ

(2n),sat(τ = 0), where Isat is determined by the fits shown

in Figure S2. Note that S2Q
(2) = 0, so the model signals there are entirely due to contamination error.
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Figure S3: Comparison of saturation models. Integrated spectral regions of the 0Q-2Q signals (ω0[r − 1/2, r + 1/2]
for ω0 = 1.59 eV) at T = 2 ps and I0 = 9 nJ and predictions from two saturation models: Exponential saturation
model (ŜrQ

(2n),exp(τ = 0), diamonds) described by Eq. S29 and saturable absorption model (ŜrQ
(2n),sat(τ = 0), squares),

described by Eq. S30.
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Figure S3 shows that the experimental data agree better with the saturable absorption model at ωt = 1.57 eV,

while the data seem to agree better with the exponential saturation model at ωt = 1.58 eV. In some spectral regions

neither model fits well. We do not believe that either saturation form is precisely accurate but rather that they serve

as guides to aid in the selection of optimal intensities. We do not anticipate perfect agreement of extracted orders

with the predictions of either model. We conclude that either model can be used for this set of data.

S6.3 Optimization for TA spectroscopy

We consider now the optimization of intensities for extraction of M = 3 orders in TA spectroscopy, rather than for

nQ 2DES. The process of estimating the contamination error is the same as described in the main text, but we use

the saturation form for TA spectra (e.g., Eq. 13 or Eq. S26) in place of the saturation form for nQ spectra (Eq. 14

or Eq. S28). We illustrate here for the exponential saturation case, Eq. 13. For the random noise distribution, we

use στ =
√
M ′σω = 1.6× 10−6 with σω as determined in Section S3, which gives σ̃ = 3.0× 10−5. Then the optimal

errors and intensities for the TA measurement are shown in Table S2. These TA pump intensities are similar to those

obtained at τ = 0 from the 1Q 2D pump intensities in Table 1, which produce a TA pulse with four times larger

intensity.

Table S2: Equivalent to Table 1 but for extraction of orders of the TA signal rather than of nQ signals,
using the exponential saturation form of the TA spectra. Errors in M = 3 orders for several choices
of number of intensities N .

N TA error Optimal I/Isat
3 0.094 0.055, 0.22, 0.35
4 0.036 0.085, 0.37, 0.67, 0.86
5 0.020 0.11, 0.49, 0.96, 1.4, 1.6
6 0.013 0.13, 0.60, 1.2, 1.8, 2.3, 2.6

S7 Experimental setup

The TA measurements are taken with a partially noncollinear pump–probe setup. The output of a commercial

Yb-laser (PHAROS, Light Conversion) is spectrally broadened with a commercial non-collinear optical parametric

amplifier (ORPHEUS, Light Conversion) and yields pulses with a spectral range from 550 nm to 840 nm at a

repetition rate of 50 kHz. The amplified output is then split (178892, Layertec GMbH), with 90% of the intensity

in the pump beam and the remaining 10% in the probe beam. The probe pulse is compressed by two fused silica

prisms and time delayed by a mechanical stage (M-IMS1000LM-S, Newport) to adjust the population time T . The

pump pulse is pre-compressed by two BK7 prisms and then compressed by an acousto-optic modulator (AOM) pulse

shaper (Quickshape, PhaseTech) that also generates coherent double pulses with variable inter-pulse delays for the

2D measurements. The pump pulse has a duration of τp = 14 fs (intensity FWHM) after compression, characterized

via a collinear frequency resolved optical gating (FROG) setup. The spectral region from 550 nm to 660 nm is blocked

in the prism compressor setups for both beams. After compression, both beams are focused in the sample position

and have beam radii of rx = 43 µm and ry = 38 µm for the probe and rx = 67 µm and ry = 172 µm for the pump
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beam at a limit of e−1 of the maximum amplitude. The pump beam is blocked after passing through the sample,

and the probe beam is detected on a shot-to-shot basis with a spectrometer (Spektrometer Acton 2156, Princeton

Instruments) and line camera (HS-Kamera Serie3030, Entwicklungsbüro Stresing). The data are taken and evaluated

with custom LabView 2021 and Matlab R2023b scripts. For the extraction of response orders of the 2D data, a total

of six 2D measurements at different pump powers were taken. Each 2D spectrum was recorded while scanning the

time delay τ between two pump pulses over M = 299 steps with a step size of 0.37 fs. The population time was set

to T = 2 ps. First the full 2D spectrum was measured before the intensity was changed. The pump-pulse energies

Ep were set to 15 nJ, 14 nJ, 10 nJ, 5.5 nJ, 1.2 nJ, and 0.16 nJ, chosen according to the optimal intensity procedure

described in the main text and in Section S6. The pump-pulse energies were determined by measuring the pulse

energy of both excitation pulses at τ = 0 fs and dividing them by four to obtain the intensity of a single pump pulse.

The first five 2D spectra were used for the extraction of the different orders, while the measurement at the lowest

pump energy is used as low-intensity reference. In this work we refer to the intensities by stating the pulse energies

as we do not vary the pump pulse envelope shape or the spot size. The maximum pulse intensities are given within

the approximation of a Gaussian beam by

Ipump =
4Ep

τprxry

√
ln 2

π3
, (S31)

which yields the peak pulse intensities listed in Table S3.

Table S3: Pulse energies and pulse intensities of a single pump pulse in 2D experiments.

Ep (nJ) Ipump (GWcm−2)
15 5.6
14 5.1
10 3.7
5.5 2.0
1.2 0.46
0.16 0.058

S8 Raw data and data processing

Before extracting the higher-order spectra discussed in the main manuscript, we apply the following data processing

procedure. First, we calculate the transient absorption signal S(τ, T, ωt, I) = − log10
Spumped(τ,T,ωt,I)

Sunpumped(τ,T,ωt,I)
. To Fourier

transform with respect to τ , for each dataset s(τ) = S(τ, T, ωt, I), we first reflect the signal to −τ , without duplicating

the τ = 0 point and then perform the discrete Fourier transform, using Eq. S5.

The squaraine polymer linear absorption (Figure 4a) signal reveals two main peaks at 1.58 eV (A) and 1.87 eV

originating from the absorption of the SQA and SQB sites. The J-type coupling leads to a further splitting of the

peaks and the enhancement of the peak A at 1.58 eV in comparison to the separated monomer units.1 The pump

spectrum covers only the spectral region from the low-energy exciton peak at 1.58 eV (A) to the vibrational mode

1.73 eV (D), but not the high-energy exciton state at 1.87 eV.

The 1Q (around ω0) and 2Q (around 2ω0) regions of the raw data, used for extracting up to the S(10) spectra,
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Figure S4: Raw 2D data at the 1Q and 2Q position taken at five different excitation intensities.
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are shown in Figure S4. All 1Q and 2Q spectra display an intense signal slightly shifted below the diagonal, due to

energy transfer taking place during the T = 2 ps population time.2,3 The 1Q spectra are dominated by a negative

feature, whereas the 2Q spectra exhibit a positive main feature. Additionally, a feature emerges at the blue edge of

the ωt axis (1.81 eV) in both nQ spectra, with its sign inverted relative to the corresponding main feature. With

increasing excitation intensity, the absolute 2Q signal is enhanced compared to the 1Q signal.

Along ωτ , the 1Q spectra display three distinct peaks, which correspond to the peaks in the absorption spectrum

A, C, and D (Figure 4a). The signal maximum of all 1Q spectra lies at the C peak (1.65 eV) although the extracted

order spectra exhibit a shift towards the redshifted peak A (Figure 4b). Moreover, the 2Q spectra exhibit an elongated

shape without clearly separable peaks. The 2Q absolute signal maximum is blueshifted along ωτ compared to twice

the absolute signal maximum of the 1Q spectrum, agreeing with the predictions of Bubilaitis and Abramavičius for

a model J-aggregate.4

S9 Comparison of lowest order with low-intensity reference measurement
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Figure S5: Lowest-order signal 1Q spectra. a) Extracted Ŝ(2), b) Low-intensity reference measurement SL,scaled scaled
to I0 (9 nJ). c) Scaled low-intensity measurement subtracted from the extracted Ŝ(2). d) Ŝ(2) and SL,scaled integrated
along ωτ 1Q (ω0[0.5, 1.5] for ω0 = 1.59 eV).

To verify the success of the extraction, we analyzed the integrated nQ signal of S(2) and S(4) (Figure 4b). For one

further verification of the extraction of the lowest-order signal, we compare our extracted lowest order signal, S(2)

(Figure S5a), with a low-intensity reference measurement, SL (Figure S5b), detected at 0.16 nJ, where we assume
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negligible higher-order contributions. To facilitate the direct comparison, we scale SL to the reference power of the

extraction I0 = 9 nJ (Figure S5). The difference signal (Figure S5c) and the comparison of the integrated 1Q signals

(Figure S5d) confirm the correct extraction of the pure third order.

S10 Visibility enhancement of cross peaks in higher-order signals

In the experimental data we see that there is a cross peak at the (ωτ , ωt) = (ωA, ωB) position that is visible in S1Q
(4)

but does not appear in S1Q
(2) . In this section we show that for a simple toy model the upper cross peak in the 1Q signal

is frequently enhanced in the S(4) signal as compared with S(2). The high-order extraction thus gives visibility into

this process even when it is not visible in the standard leading-order 2DES. The experimental data are for a polymer

with on average 18 dimer subunits. For this theoretical discussion, we consider a dimer of two-level systems, which

is the simplest possible model of a polymer. The fact that we see enhancement of the cross peak in S(4) as compared

with S(2) for a wide range of parameters for such a simple model leads us to conclude that such effects can occur,

and are perhaps even highly likely to occur, in polymer systems.

We describe our dimer with the Hamiltonian

H =



ωg 0 0 0

0 ωa J 0

0 J ωb 0

0 0 0 ωf


, (S32)

where ~ = 1 and we take ωg = 0 and ωf = ωa+ωb, where there are four basis states |g〉 , |a〉 , |b〉 , |f〉. The Hamiltonian

can be diagonalized to find the eigenvalues 0, ωα, ωβ , (ωa + ωb), where

ωα =
1

2

(
ωa + ωb −

√
(ωa − ωb)

2 + 4J2

)
, (S33)

ωβ =
1

2

(
ωa + ωb +

√
(ωa − ωb)

2 + 4J2

)
,

corresponding to eigenstates

|α〉 = 1√
N

[
−
(
x+

√
x2 + 1

)
|a〉+ |b〉

]
, (S34)

|β〉 = 1√
N

[
|a〉+

(
x+

√
x2 + 1

)
|b〉
]
,

where N = 2
(
x2 + 1 + x

√
x2 + 1

)
with x = ωb−ωa

2J
. We define the splitting between the singly excited eigenvalues

ωβα = ωβ − ωα

=

√
(ωa − ωb)

2 + 4J2 (S35)
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and the average singly excited eigenvalue is

ωave =
ωα + ωβ

2
=

ωa + ωb

2
. (S36)

With this model, we explore the cross peak at (ωτ , ωt) = (ωA, ωB), so we fix ωα = ωA and ωβ = ωB . With these

two values set, there is a single free parameter in the Hamiltonian, J , which can vary from 0 to ωβα/2. For J = 0,

there cannot be cross peaks in a 2DES signal, since the two subsystems are uncoupled. As J increases, we expect

that the cross peaks become more visible.

The dimer’s dipole operator in the |g〉 , |a〉 , |b〉 , |f〉 basis is

µ =



0 µag µbg 0

µag 0 0 µfa

µbg 0 0 µfb

0 µfa µfb 0


, (S37)

where µij = 〈i|µ |j〉, and we take µfa = µbg, µfb = µag. Transforming to the eigenbasis, we have

µαg =
1√
N

[
−
(
x+

√
x2 + 1

)
µag + µbg

]
, (S38)

µβg =
1√
N

[
µag +

(
x+

√
x2 + 1

)
µbg

]
.

Let us assume that we have a linear absorption spectrum with two well-resolved peaks. In such a case, ωα, ωβ ,

µαg, and µβg are all known. Given these constraints, we can explore all possible dimer models that are consistent

with this linear absorption spectrum, where there is a single free parameter, J , which can vary from 0 to ωβα/2.

In the case of the experimental data, we know the splitting ωβα thanks to the cross peak visible in S1Q
(4) , but we

do not know the values of µαg and µβg, since the peaks overlap in the linear absorption spectrum. We will therefore

consider three values of µr = µαg/µβg. We consider µ2
r = 0.5, 1, 2. See the example linear absorption spectra for each

of these three cases in Figure S6a where the spectra are normalized such that µ2
αg + µ2

βg = 1. The ratio of the input

dipole moments is
µbg

µag
=

µr + x+
√
x2 + 1

1− µrx− µr

√
x2 + 1

. (S39)

Using the Ultrafast Spectroscopy Suite (UFSS)5,6, we simulate the signals S1Q
(2) and S1Q

(4) due to impulsive pulses

for population times Tωβα = 0.1, π/2, π. We find the population time with the largest-magnitude cross peak, which

we label T ′. We then divide the cross-peak signal, S(2n)(ωA, T
′, ωB), by the absolute maximum signal Smax

(2n)(T
′) ≡

maxωτ ,ωt |S(2n)(ωτ , T
′, ωt)|, to define the cross peak visibility as

η(2n) =
S(2n)(ωA, T

′, ωB)

Smax
(2n)(T

′)
. (S40)

We plot η(2) and η(4) in Figure S6b and the visibility enhancement η(4)/η(2) in Figure S6c. The visibility enhancement
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Figure S6: Dimer model. (a) Linear absorption for three choices of µr. (b) Visibility η(n) of (ωα, ωβ) cross peak for
n = 2, 4 and the three choices of µr shown in panel a. (c) Relative visibility enhancement showing that the cross
peak is almost always more visible in S(4) than it is in S(2).

is nearly always greater than 1, except for J near its maximum value. In addition, the visibility enhancement is

largest when visibility is small. This enhancement demonstrates the utility of measuring S(4), as it is a useful tool in

uncovering cross peaks that might otherwise be hidden.

All of the calculations in this section are for a closed system and ignore the effects of a bath. The linear absorption

spectra shown in Figure S6a are shown with a phenomenological linewidth of Γ = 0.1ωβα, added after the simulations

by multiplying the time-domain signal by e−Γt. However, the visibilities η(2n) are calculated by using a linewidth

of Γ = 0.01ωβα, This small linewidth ensures that the cross-peak position has negligible amplitude bleeding over

from the diagonal peaks. When the linewidths are larger, the wings of the diagonal peaks can mask the cross peak.

In this model, the upper-left cross peak in S(2) is always opposite in sign to the other three peaks for J < 0.28,

and so the wings of the diagonal peaks can cancel with the cross peak, leaving little or no signal at that spectral

location. We show two examples where the upper-left cross peak is not clearly visible in S(2) due to competition

between a small but non-zero cross-peak signal and the wings of the diagonal peaks. Figures S7a and c show S(2)

and S(4), respectively, for J = 0.017ωβα and the same linewidth used for Figure S6a. Figures S7b and d show S(2)

and S(4), respectively, for J = 0.1ωβα and a Lorentzian linewidth of Γ = 0.5. Even though they come from a simple

coupled-dimer model, panels b and d look qualitatively similar to the experimental results in Fig. 4b.

We further note that the cross peaks in a dimer model represent signals originating from transitions between both

the ground state and the singly excited states, as well as signals originating from transitions between singly excited

and doubly excited states. We have given all of these the same linewidth, but a more realistic model would have

different linewidths, which would cause the cross peak to have more complicated shapes. However, we expect the

qualitative argument to be the same: the S(4) signal should in general have higher visibility than S(2), and we expect

there to be a considerable range of J in which the cross peak is hidden in S(2) but visible in S(4).
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Figure S7: 1Q signals for the dimer model with µr = 1, showing two different examples with no cross peak at position
(ωτ , ωt) = (ωα.ωβ) visible at lowest order but clearly visible in S(4). (a) S1Q

(2) for Γ = 0.1ωβα and J = 0.017ωβα.
(b) S1Q
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